IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v337y2016icp29-38.html
   My bibliography  Save this article

Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China

Author

Listed:
  • Zhang, Yan
  • Lu, Hanjing
  • Fath, Brian D.
  • Zheng, Hongmei

Abstract

The consumption of food, energy, and industrial products in cities results in large quantities of excess nitrogen circulating in socio-ecological systems. However, details about how nitrogen flows and transforms within urban systems are unclear. In this study, we analyzed the nitrogen processes of Beijing considering the influences from human activities and nature under the framework of urban metabolism. Ecological network analysis was used to track the integral (direct+indirect) flows and to compare the contribution of direct and indirect flows at both the scale of each component and of the whole urban system during the period from 1996 to 2012. We found that Atmosphere, Household, and Industry had the most interactions with other nodes in the network. The integral flow from Industry to Atmosphere, which was consistently at 200Gg, was the largest at five time points; the flow from Household to Sewage treatment grew fastest, and in 2012, increased to 5.9 times its 1996 value; the flow from Industry to Farmland decreased most obviously, and in 2012, it decreased to 12.9% of the value in 1996. Moreover, the indirect effects were dominant for the whole system in Beijing with a ratio of indirect to direct flow equal to 1.2. Surface Water and Forest had the strongest indirect effects maintaining a ratio of almost 2. Meanwhile, exploitation and competition relations were most frequent and their proportions were much larger than the proportion of mutualism relations. Through our results, integral flows were found to identify accurately the crucial process of nitrogen metabolism and our results showed how these ecological relationships influence the urban nitrogen flows within the system.

Suggested Citation

  • Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
  • Handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:29-38
    DOI: 10.1016/j.ecolmodel.2016.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016302009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dame, James K. & Christian, Robert R., 2008. "Evaluation of ecological network analysis: Validation of output," Ecological Modelling, Elsevier, vol. 210(3), pages 327-338.
    2. Schramski, J.R. & Gattie, D.K. & Patten, B.C. & Borrett, S.R. & Fath, B.D. & Whipple, S.J., 2007. "Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 18-30.
    3. Reid Bailey & Bert Bras & Janet K. Allen, 2004. "Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part II: Flow Metrics," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 69-91, January.
    4. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    5. Pierer, Magdalena & Winiwarter, Wilfried & Leach, Allison M. & Galloway, James N., 2014. "The nitrogen footprint of food products and general consumption patterns in Austria," Food Policy, Elsevier, vol. 49(P1), pages 128-136.
    6. Min, Yong & Jin, Xiaogang & Chang, Jie & Peng, Changhui & Gu, Baojing & Ge, Ying & Zhong, Yang, 2011. "Weak indirect effects inherent to nitrogen biogeochemical cycling within anthropogenic ecosystems: A network environ analysis," Ecological Modelling, Elsevier, vol. 222(17), pages 3277-3284.
    7. Zhang, Yan & Li, Shengsheng & Fath, Brian D. & Yang, Zhifeng & Yang, Naijin, 2011. "Analysis of an urban energy metabolic system: Comparison of simple and complex model results," Ecological Modelling, Elsevier, vol. 223(1), pages 14-19.
    8. Costea, Carmen, 2006. "Comments on the use of network structures to analyse commercial companies’ evolution and their impact on economic behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 140-144.
    9. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    10. Whipple, Stuart J. & Borrett, Stuart R. & Patten, Bernard C. & Gattie, David K. & Schramski, John R. & Bata, Seth A., 2007. "Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 1-17.
    11. Christian, Robert R. & Brinson, Mark M. & Dame, James K. & Johnson, Galen & Peterson, Charles H. & Baird, Daniel, 2009. "Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary," Ecological Modelling, Elsevier, vol. 220(22), pages 3113-3122.
    12. Baird, Dan & Fath, Brian D. & Ulanowicz, Robert E. & Asmus, Harald & Asmus, Ragnhild, 2009. "On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3465-3471.
    13. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.
    14. Reid Bailey & Janet K. Allen & Bert Bras, 2004. "Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 45-68, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imran Hussain & Abdul Rehman, 2022. "How CO2 emission interacts with livestock production for environmental sustainability? evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8545-8565, June.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Gao, Chengkang & Zhang, Shuaibing & Song, Kaihui & Na, Hongming & Tian, Fan & Zhang, Menghui & Gao, Wengang, 2018. "Conjoint analysis of nitrogen, phosphorus and sulfur metabolism: A case study of Liaoning Province, China," Ecological Modelling, Elsevier, vol. 390(C), pages 70-78.
    4. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    5. Yanxian Li & Jiawen Wang & Dan Xian & Yan Zhang & Xiangyi Yu, 2021. "Regional consumption, material flows, and their driving forces: A case study of China's Beijing–Tianjin–Hebei (Jing–Jin–Ji) urban agglomeration," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 751-764, June.
    6. Wu, Dongdong & Zhang, Yan & Zhang, Xiaolin & Fath, Brain D., 2023. "Research progress of urban nitrogen cycle and metabolism," Ecological Modelling, Elsevier, vol. 486(C).
    7. Zhang, Xiaolin & Zhang, Yan & Wang, Yifan & Fath, Brian D., 2021. "Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis," Ecological Modelling, Elsevier, vol. 443(C).
    8. Gao, Yan & Liu, Gengyuan & Casazza, Marco & Hao, Yan & Zhang, Yan & Giannetti, Biagio F., 2018. "Economy-pollution nexus model of cities at river basin scale based on multi-agent simulation: A conceptual framework," Ecological Modelling, Elsevier, vol. 379(C), pages 22-38.
    9. Thomas Elliot & Javier Babí Almenar & Samuel Niza & Vânia Proença & Benedetto Rugani, 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    10. María Jesús Ávila-Gutiérrez & Alejandro Martín-Gómez & Francisco Aguayo-González & Juan Ramón Lama-Ruiz, 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition," Sustainability, MDPI, vol. 12(5), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    3. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    4. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    5. Mao, Xufeng & Yang, Zhifeng, 2011. "Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach," Ecological Modelling, Elsevier, vol. 222(23), pages 3811-3820.
    6. Min, Yong & Jin, Xiaogang & Chang, Jie & Peng, Changhui & Gu, Baojing & Ge, Ying & Zhong, Yang, 2011. "Weak indirect effects inherent to nitrogen biogeochemical cycling within anthropogenic ecosystems: A network environ analysis," Ecological Modelling, Elsevier, vol. 222(17), pages 3277-3284.
    7. Yang, Zhifeng & Mao, Xufeng, 2011. "Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3785-3794.
    8. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    9. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.
    10. Mao, Xufeng & Cui, Lijuan & Wang, Changhai, 2013. "Exploring the hydrologic relationships in a swamp-dominated watershed—A network-environ-analysis based approach," Ecological Modelling, Elsevier, vol. 252(C), pages 273-279.
    11. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    12. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    13. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    15. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.
    16. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    17. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    18. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    19. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    20. Guo, Ruipeng & Zhu, Xiaojie & Chen, Bin & Yue, Yunli, 2016. "Ecological network analysis of the virtual water network within China’s electric power system during 2007–2012," Applied Energy, Elsevier, vol. 168(C), pages 110-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:29-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.