IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v286y2014icp37-44.html
   My bibliography  Save this article

Providing insights on habitat connectivity for male brown bears: A combination of habitat suitability and landscape graph-based models

Author

Listed:
  • Almpanidou, Vasiliki
  • Mazaris, Antonios D.
  • Mertzanis, Yorgos
  • Avraam, Ioannis
  • Antoniou, Ioannis
  • Pantis, John D.
  • Sgardelis, Stefanos P.

Abstract

The combined study of movement patterns and habitat selection, behaviors that are affected by landscape structure, is of critical importance for effective conservation of wildlife. In the same context, maintaining connectivity is a key component for facilitating movement and ensuring species persistence. The brown bear is a wide-ranging predator that moves across large areas, crossing various habitats of different quality. Here, we provide a methodological framework that allowed us to explore the relative importance of habitat quality upon movement patterns and connectivity. First, we developed habitat-suitability models by using telemetry data of eight male brown bears (12,893 radio-locations) collected in Greece. Next, we combined habitat-suitability maps with real movement data to develop graph models that represent movement networks as inter-connected patches of different quality. Network analyses revealed that movement networks demonstrate some well-studied properties regarding their structure and robustness (i.e. scale-free and small-world), providing insights on the contribution of patches of different quality to connectivity. Less suitable patches were found to play a critical role for facilitating brown bear's movement and landscape connectivity. Our findings raise the importance of considering the entire habitat of brown bear in conservation planning rather than isolated patches of high quality, as it might have been revealed by simple habitat-suitability models. Our results highlight the need of assessing the importance of the intervening matrix for facilitating connectivity and movement specifically in the case of large and highly mobile species that do not perceive landscape as strictly dichotomous.

Suggested Citation

  • Almpanidou, Vasiliki & Mazaris, Antonios D. & Mertzanis, Yorgos & Avraam, Ioannis & Antoniou, Ioannis & Pantis, John D. & Sgardelis, Stefanos P., 2014. "Providing insights on habitat connectivity for male brown bears: A combination of habitat suitability and landscape graph-based models," Ecological Modelling, Elsevier, vol. 286(C), pages 37-44.
  • Handle: RePEc:eee:ecomod:v:286:y:2014:i:c:p:37-44
    DOI: 10.1016/j.ecolmodel.2014.04.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014002142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.04.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas, Christopher J. & Lambrechts, Jonathan & Wolanski, Eric & Traag, Vincent A. & Blondel, Vincent D. & Deleersnijder, Eric & Hanert, Emmanuel, 2014. "Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef," Ecological Modelling, Elsevier, vol. 272(C), pages 160-174.
    2. Jordán, Ferenc & Benedek, Zsófia & Podani, János, 2007. "Quantifying positional importance in food webs: A comparison of centrality indices," Ecological Modelling, Elsevier, vol. 205(1), pages 270-275.
    3. Finn, J.T. & Brownscombe, J.W. & Haak, C.R. & Cooke, S.J. & Cormier, R. & Gagne, T. & Danylchuk, A.J., 2014. "Applying network methods to acoustic telemetry data: Modeling the movements of tropical marine fishes," Ecological Modelling, Elsevier, vol. 293(C), pages 139-149.
    4. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    5. Shanthala Devi, B.S. & Murthy, M.S.R. & Debnath, Bijan & Jha, C.S., 2013. "Forest patch connectivity diagnostics and prioritization using graph theory," Ecological Modelling, Elsevier, vol. 251(C), pages 279-287.
    6. Fath, Brian D. & Scharler, Ursula M. & Ulanowicz, Robert E. & Hannon, Bruce, 2007. "Ecological network analysis: network construction," Ecological Modelling, Elsevier, vol. 208(1), pages 49-55.
    7. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    8. Martin, Jodie & Calenge, Clément & Quenette, Pierre-Yves & Allainé, Dominique, 2008. "Importance of movement constraints in habitat selection studies," Ecological Modelling, Elsevier, vol. 213(2), pages 257-262.
    9. Rodriguez, Marko A. & Pepe, Alberto, 2008. "On the relationship between the structural and socioacademic communities of a coauthorship network," Journal of Informetrics, Elsevier, vol. 2(3), pages 195-201.
    10. Jordán, Ferenc & Okey, Thomas A. & Bauer, Barbara & Libralato, Simone, 2008. "Identifying important species: Linking structure and function in ecological networks," Ecological Modelling, Elsevier, vol. 216(1), pages 75-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henriette Heer & Lucas Streib & Ralf B Schäfer & Stefan Ruzika, 2020. "Maximising the clustering coefficient of networks and the effects on habitat network robustness," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
    2. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2018. "Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA)," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    3. Carla Garcia-Lozano & Diego Varga & Josep Pintó & Francesc Xavier Roig-Munar, 2020. "Landscape Connectivity and Suitable Habitat Analysis for Wolves ( Canis lupus L.) in the Eastern Pyrenees," Sustainability, MDPI, vol. 12(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    4. Jordán, Ferenc & Liu, Wei-chung & Mike, Ágnes, 2009. "Trophic field overlap: A new approach to quantify keystone species," Ecological Modelling, Elsevier, vol. 220(21), pages 2899-2907.
    5. Losapio, Gianalberto & Jordán, Ferenc & Caccianiga, Marco & Gobbi, Mauro, 2015. "Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland," Ecological Modelling, Elsevier, vol. 314(C), pages 73-79.
    6. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    7. Stefano Allesina & Mercedes Pascual, 2009. "Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-6, September.
    8. Yang, Tianxiang & Jing, Dong & Wang, Shoubing, 2015. "Applying and exploring a new modeling approach of functional connectivity regarding ecological network: A case study on the dynamic lines of space syntax," Ecological Modelling, Elsevier, vol. 318(C), pages 126-137.
    9. Bo Mu & Guohang Tian & Gengyu Xin & Miao Hu & Panpan Yang & Yiwen Wang & Hao Xie & Audrey L. Mayer & Yali Zhang, 2021. "Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China," Land, MDPI, vol. 10(5), pages 1-21, May.
    10. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    11. Dunlap, J. & Schramski, J.R., 2024. "Energy-systems accounting in industrial-natural systems; An energy analysis of a managed forest ecosystem including food web biomass dynamics," Ecological Modelling, Elsevier, vol. 488(C).
    12. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Sahatqija, Kosovare & Kadriu, Arbana, 2019. "Exploring Gender Role in Co-Authorship Networks for Computing Books: A Case Study in DBLP," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 33-39, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    14. Roy, Arijit & Bhattacharya, Sudeepto & Ramprakash, M. & Senthil Kumar, A., 2016. "Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach," Ecological Modelling, Elsevier, vol. 329(C), pages 77-85.
    15. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    16. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    17. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    18. Zhijun Luo & Xiaofang Yang & Songkai Luo, 2024. "Land Use Simulation and Ecological Network Construction around Poyang Lake Area in China under the Goal of Sustainable Development," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    19. Li, Lianwei & Li, Wendy & Zou, Quan & Ma, Zhanshan (Sam), 2020. "Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds," Ecological Modelling, Elsevier, vol. 431(C).
    20. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:286:y:2014:i:c:p:37-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.