IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v63y2022ics1062940822001334.html
   My bibliography  Save this article

A novel estimation of time-varying quantile correlation for financial contagion detection

Author

Listed:
  • Ye, Wuyi
  • Li, Mingge
  • Wu, Yuehua

Abstract

A time-varying quantile correlation (TV-QCOR) measure is developed, and the local polynomial regression framework for its estimation and statistical inference is proposed. TV-QCOR measure can capture the dynamic interdependence between financial time series and thus detect contagion between financial markets. The expression of the TV-QCOR with copula functions is proved under the standard normal marginal distribution assumption. Simulation exercises highlight its capability to describe different dependence structures. In the empirical analyses, TV-QCORs between the United States Standard&Poor 500 index and stock market indices of eight countries and regions at different τth quantiles are estimated. A contagion detection test is proposed by contrasting the TV-QCOR during a crisis period with that during a normal period; it finds contagion effect during the Great Recession of 2007–2012 and observes quite different levels of spillover effect between the United States and other countries and regions.

Suggested Citation

  • Ye, Wuyi & Li, Mingge & Wu, Yuehua, 2022. "A novel estimation of time-varying quantile correlation for financial contagion detection," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
  • Handle: RePEc:eee:ecofin:v:63:y:2022:i:c:s1062940822001334
    DOI: 10.1016/j.najef.2022.101796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940822001334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2022.101796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    2. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    3. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    4. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    5. Imen Zorgati & Faten Lakhal & Elmoez Zaabi, 2019. "Financial contagion in the subprime crisis context: A copula approach," Post-Print hal-02052406, HAL.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. Zorgati, Imen & Lakhal, Faten & Zaabi, Elmoez, 2019. "Financial contagion in the subprime crisis context: A copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 269-282.
    8. Ye, Wuyi & Luo, Kebing & Liu, Xiaoquan, 2017. "Time-varying quantile association regression model with applications to financial contagion and VaR," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1015-1028.
    9. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    10. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    11. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    12. Dimitriou, Dimitrios & Kenourgios, Dimitris & Simos, Theodore, 2013. "Global financial crisis and emerging stock market contagion: A multivariate FIAPARCH–DCC approach," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 46-56.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    15. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    16. BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
    17. Ye, Wuyi & Liu, Xiaoquan & Miao, Baiqi, 2012. "Measuring the subprime crisis contagion: Evidence of change point analysis of copula functions," European Journal of Operational Research, Elsevier, vol. 222(1), pages 96-103.
    18. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    19. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
    20. Veni Arakelian & Petros Dellaportas, 2012. "Contagion determination via copula and volatility threshold models," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 295-310, October.
    21. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    22. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    23. Ye, Wuyi & Zhu, Yangguang & Wu, Yuehua & Miao, Baiqi, 2016. "Markov regime-switching quantile regression models and financial contagion detection," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 21-26.
    24. Sensoy, Ahmet & Ozturk, Kevser & Hacihasanoglu, Erk & Tabak, Benjamin M., 2017. "Not all emerging markets are the same: A classification approach with correlation based networks," Journal of Financial Stability, Elsevier, vol. 33(C), pages 163-186.
    25. Kuan-Min Wang & Thanh-Binh Nguyen Thi, 2013. "Did China avoid the ‘Asian flu’? The contagion effect test with dynamic correlation coefficients," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 471-481, February.
    26. Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen, 2018. "The shifting dependence dynamics between the G7 stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(5), pages 801-812, May.
    27. Paulo Horta & Sérgio Lagoa & Luís Martins, 2016. "Unveiling investor-induced channels of financial contagion in the 2008 financial crisis using copulas," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 625-637, April.
    28. Le, Trung Hai & Do, Hung Xuan & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Covid-19 pandemic and tail-dependency networks of financial assets," Finance Research Letters, Elsevier, vol. 38(C).
    29. Sensoy, Ahmet & Soytas, Ugur & Yildirim, Irem & Hacihasanoglu, Erk, 2014. "Dynamic relationship between Turkey and European countries during the global financial crisis," Economic Modelling, Elsevier, vol. 40(C), pages 290-298.
    30. Baur, Dirk G. & Schulze, Niels, 2009. "Financial market stability--A test," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 506-519, July.
    31. Samitas, Aristeidis & Tsakalos, Ioannis, 2013. "How can a small country affect the European economy? The Greek contagion phenomenon," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 25(C), pages 18-32.
    32. Baur, Dirk & Schulze, Niels, 2005. "Coexceedances in financial markets--a quantile regression analysis of contagion," Emerging Markets Review, Elsevier, vol. 6(1), pages 21-43, April.
    33. Kenourgios, Dimitris & Dimitriou, Dimitrios, 2015. "Contagion of the Global Financial Crisis and the real economy: A regional analysis," Economic Modelling, Elsevier, vol. 44(C), pages 283-293.
    34. Grubel, Herbert G & Fadner, Kenneth, 1971. "The Interdependence of International Equity Markets," Journal of Finance, American Finance Association, vol. 26(1), pages 89-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    2. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    3. Ye, Wuyi & Luo, Kebing & Liu, Xiaoquan, 2017. "Time-varying quantile association regression model with applications to financial contagion and VaR," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1015-1028.
    4. Wuyi Ye & Kebing Luo & Shaofu Du, 2014. "Measuring Contagion of Subprime Crisis Based on MVMQ-CAViaR Method," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-12, June.
    5. Imen Bedoui-Belghith & Slaheddine Hallara & Faouzi Jilani, 2023. "Crisis transmission degree measurement under crisis propagation model," SN Business & Economics, Springer, vol. 3(1), pages 1-27, January.
    6. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Spillovers from the United States to Latin American and G7 stock markets: A VAR quantile analysis," Emerging Markets Review, Elsevier, vol. 31(C), pages 32-46.
    7. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2014. "Modeling Dependence Structure and Forecasting Portfolio Value-at-Risk with Dynamic Copulas," SIRE Discussion Papers 2015-25, Scottish Institute for Research in Economics (SIRE).
    8. Udichibarna Bose & Ronald MacDonald & Serafeim Tsoukas, 2014. "The role of education in equity portfolios during the recent financial crisis," Working Papers 2014_17, Business School - Economics, University of Glasgow.
    9. Aristeidis Samitas & Elias Kampouris & Zaghum Umar, 2022. "Financial contagion in real economy: The key role of policy uncertainty," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1633-1682, April.
    10. Rajan Sruthi & Santhakumar Shijin, 2020. "Investigating liquidity constraints as a channel of contagion: a regime switching approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-21, December.
    11. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2014. "Modeling Dependence Structure and Forecasting Portfolio Value-at-Risk with Dynamic Copulas," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-25, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    13. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    14. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    15. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    16. Mensi, Walid & Hammoudeh, Shawkat & Reboredo, Juan Carlos & Nguyen, Duc Khuong, 2014. "Do global factors impact BRICS stock markets? A quantile regression approach," Emerging Markets Review, Elsevier, vol. 19(C), pages 1-17.
    17. Paravee Maneejuk & Woraphon Yamaka, 2019. "Predicting Contagion from the US Financial Crisis to International Stock Markets Using Dynamic Copula with Google Trends," Mathematics, MDPI, vol. 7(11), pages 1-29, November.
    18. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
    19. Philippas, Dionisis & Siriopoulos, Costas, 2013. "Putting the “C” into crisis: Contagion, correlations and copulas on EMU bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 27(C), pages 161-176.
    20. Klochkov, Yegor & Härdle, Wolfgang Karl & Xu, Xiu, 2019. "Localizing Multivariate CAViaR," IRTG 1792 Discussion Papers 2019-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Keywords

    Quantile correlation; Local polynomial estimation; Financial crisis; Contagion effect;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:63:y:2022:i:c:s1062940822001334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.