IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i2p295-310.html
   My bibliography  Save this article

Contagion determination via copula and volatility threshold models

Author

Listed:
  • Veni Arakelian
  • Petros Dellaportas

Abstract

We develop threshold models that allow volatilities and copula functions or their association parameters to change across time. The number and location of the thresholds is assumed unknown. We use a Markov chain Monte Carlo strategy combined with Laplace estimates that evaluate the required marginal densities for a given model. We apply our methodology to financial time series, emphasizing the ability to improve estimates of risk characteristics, as well as measuring financial contagion by inspecting simultaneous changes of dependence and volatility structures.

Suggested Citation

  • Veni Arakelian & Petros Dellaportas, 2012. "Contagion determination via copula and volatility threshold models," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 295-310, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:295-310
    DOI: 10.1080/14697680903410023
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680903410023
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903410023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raffaella Calabrese & Johan A. Elkink & Paolo S. Giudici, 2017. "Measuring bank contagion in Europe using binary spatial regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1503-1511, December.
    2. Guidolin, Massimo & Hansen, Erwin & Pedio, Manuela, 2019. "Cross-asset contagion in the financial crisis: A Bayesian time-varying parameter approach," Journal of Financial Markets, Elsevier, vol. 45(C), pages 83-114.
    3. Nina Tessler & Itzhak Venezia, 2022. "A multicountry measure of comovement and contagion in international markets: definition and applications," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1307-1330, May.
    4. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    5. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stober, 2016. "Regime switching vine copula models for global equity and volatility indices," Papers 1604.05598, arXiv.org.
    6. Aristeidis Samitas & Elias Kampouris & Zaghum Umar, 2022. "Financial contagion in real economy: The key role of policy uncertainty," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1633-1682, April.
    7. Thijs Markwat, 2014. "The rise of global stock market crash probabilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 557-571, April.
    8. Ye, Wuyi & Li, Mingge & Wu, Yuehua, 2022. "A novel estimation of time-varying quantile correlation for financial contagion detection," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    9. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stöber, 2017. "Regime Switching Vine Copula Models for Global Equity and Volatility Indices," Econometrics, MDPI, vol. 5(1), pages 1-38, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:295-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.