IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i6p3195-d520529.html
   My bibliography  Save this article

Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model

Author

Listed:
  • Amanda M. Y. Chu

    (Department of Social Sciences, The Education University of Hong Kong, Tai Po, Hong Kong)

  • Thomas W. C. Chan

    (Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong)

  • Mike K. P. So

    (Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong)

  • Wing-Keung Wong

    (Department of Finance, Fintech & Blockchain Research Center, and Big Data Research Center, Asia University, Taichung 41354, Taiwan
    Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
    Department of Economics and Finance, The Hang Seng University of Hong Kong, Shatin, Hong Kong)

Abstract

In this paper, we propose a latent pandemic space modeling approach for analyzing coronavirus disease 2019 (COVID-19) pandemic data. We developed a pandemic space concept that locates different regions so that their connections can be quantified according to the distances between them. A main feature of the pandemic space is to allow visualization of the pandemic status over time through the connectedness between regions. We applied the latent pandemic space model to dynamic pandemic networks constructed using data of confirmed cases of COVID-19 in 164 countries. We observed the ways in which pandemic risk evolves by tracing changes in the locations of countries within the pandemic space. Empirical results gained through this pandemic space analysis can be used to quantify the effectiveness of lockdowns, travel restrictions, and other measures in regard to reducing transmission risk across countries.

Suggested Citation

  • Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:3195-:d:520529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/6/3195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/6/3195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian M. Hafner, 2020. "The Spread of the Covid-19 Pandemic in Time and Space," IJERPH, MDPI, vol. 17(11), pages 1-13, May.
    2. Sabina Saccomanno & Mauro Bernabei & Fabio Scoppa & Alessio Pirino & Rodolfo Mastrapasqua & Marina Angela Visco, 2020. "Coronavirus Lockdown as a Major Life Stressor: Does It Affect TMD Symptoms?," IJERPH, MDPI, vol. 17(23), pages 1-13, November.
    3. Daniel J McGrail & Jianli Dai & Kathleen M McAndrews & Raghu Kalluri, 2020. "Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-9, July.
    4. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    5. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).
    6. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    7. Seongryu Bae & Kenji Harada & Ippei Chiba & Keitaro Makino & Osamu Katayama & Sangyoon Lee & Yohei Shinkai & Hiroyuki Shimada, 2020. "A New Social Network Scale for Detecting Depressive Symptoms in Older Japanese Adults," IJERPH, MDPI, vol. 17(23), pages 1-13, November.
    8. Kevin Linka & Mathias Peirlinck & Francisco Sahli Costabal & Ellen Kuhl, 2020. "Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 23(11), pages 710-717, August.
    9. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    10. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    11. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    12. So, Mike K.P. & Yeung, Cherry Y.T., 2014. "Vine-copula GARCH model with dynamic conditional dependence," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 655-671.
    13. Nakamura, Hiroki & Managi, Shunsuke, 2020. "Airport risk of importation and exportation of the COVID-19 pandemic," Transport Policy, Elsevier, vol. 96(C), pages 40-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    2. Sumia Mumtaz & Amanda M. Y. Chu & Saman Attiq & Hassan Jalil Shah & Wing-Keung Wong, 2022. "Habit—Does It Matter? Bringing Habit and Emotion into the Development of Consumer’s Food Waste Reduction Behavior with the Lens of the Theory of Interpersonal Behavior," IJERPH, MDPI, vol. 19(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    2. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    3. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    4. Tracy Sweet & Samrachana Adhikari, 2020. "A Latent Space Network Model for Social Influence," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 251-274, June.
    5. Minjeong Jeon & Ick Hoon Jin & Michael Schweinberger & Samuel Baugh, 2021. "Mapping Unobserved Item–Respondent Interactions: A Latent Space Item Response Model with Interaction Map," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 378-403, June.
    6. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    7. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    8. Xiao-Li Meng, 2016. "Discussion: Should a Working Model Actually Work?," International Statistical Review, International Statistical Institute, vol. 84(3), pages 362-367, December.
    9. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    11. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    12. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    13. Eric A. Vance & Elizabeth A. Archie & Cynthia J. Moss, 2009. "Social networks in African elephants," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 273-293, December.
    14. Marchette, David J. & Priebe, Carey E., 2008. "Predicting unobserved links in incompletely observed networks," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1373-1386, January.
    15. repec:spo:wpecon:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    16. Cai, Wei & Guan, Guoyu & Pan, Rui & Zhu, Xuening & Wang, Hansheng, 2018. "Network linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 32-44.
    17. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    18. Mark S. Handcock, 2017. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1537-1539, October.
    19. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    20. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    21. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    22. Montes-Rojas Gabriel, 2022. "Subgraph Network Random Effects Error Components Models: Specification and Testing," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 17-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:3195-:d:520529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.