Prediction intervals for integrals of Gaussian random fields
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2014.09.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Federica Giummolè & Paolo Vidoni, 2010. "Improved prediction limits for a general class of Gaussian models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 483-493, November.
- J. F. Lawless & Marc Fredette, 2005. "Frequentist prediction intervals and predictive distributions," Biometrika, Biometrika Trust, vol. 92(3), pages 529-542, September.
- Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
- Masao Ueki & Kaoru Fueda, 2007. "Adjusting estimative prediction limits," Biometrika, Biometrika Trust, vol. 94(2), pages 509-511.
- De Oliveira, Victor & Rui, Changxiang, 2009. "On shortest prediction intervals in log-Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4345-4357, October.
- Victor De Oliveira, 2006. "On Optimal Point and Block Prediction in Log‐Gaussian Random Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 523-540, September.
- Sara Sjöstedt‐de Luna & Alastair Young, 2003. "The Bootstrap and Kriging Prediction Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 175-192, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- De Oliveira, Victor & Rui, Changxiang, 2009. "On shortest prediction intervals in log-Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4345-4357, October.
- Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
- Vidoni, Paolo, 2015. "Calibrated multivariate distributions for improved conditional prediction," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 16-25.
- Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.
- Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
- Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
- Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
- Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
- Jorge Navarro & Francesco Buono, 2023. "Predicting future failure times by using quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 543-576, July.
- Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
- Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
- Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
- Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
- Wang, Hsiuying, 2008. "Coverage probability of prediction intervals for discrete random variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 17-26, September.
- Hartman, Linda & Hossjer, Ola, 2008. "Fast kriging of large data sets with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2331-2349, January.
- Haojin Zhou & Tapan Nayak, 2015. "On the equivariance criterion in statistical prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 541-555, June.
- Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
- Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
More about this item
Keywords
Block average; Bootstrap calibration; Change of support problem; Geostatistics; Kriging; Spatial average;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:83:y:2015:i:c:p:37-51. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.