IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v30y2003i1p175-192.html
   My bibliography  Save this article

The Bootstrap and Kriging Prediction Intervals

Author

Listed:
  • Sara Sjöstedt‐de Luna
  • Alastair Young

Abstract

Kriging is a method for spatial prediction that, given observations of a spatial process, gives the optimal linear predictor of the process at a new specified point. The kriging predictor may be used to define a prediction interval for the value of interest. The coverage of the prediction interval will, however, equal the nominal desired coverage only if it is constructed using the correct underlying covariance structure of the process. If this is unknown, it must be estimated from the data. We study the effect on the coverage accuracy of the prediction interval of substituting the true covariance parameters by estimators, and the effect of bootstrap calibration of coverage properties of the resulting ‘plugin’ interval. We demonstrate that plugin and bootstrap calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration appears to have a significant effect in improving the rate of convergence of coverage error.

Suggested Citation

  • Sara Sjöstedt‐de Luna & Alastair Young, 2003. "The Bootstrap and Kriging Prediction Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 175-192, March.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:1:p:175-192
    DOI: 10.1111/1467-9469.00325
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00325
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Li, Mingyang & Wang, Zequn, 2019. "Surrogate model uncertainty quantification for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    3. De Oliveira, Victor & Kone, Bazoumana, 2015. "Prediction intervals for integrals of Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 37-51.
    4. D den Hertog & J P C Kleijnen & A Y D Siem, 2006. "The correct Kriging variance estimated by bootstrapping," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 400-409, April.
    5. De Oliveira, Victor & Rui, Changxiang, 2009. "On shortest prediction intervals in log-Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4345-4357, October.
    6. Federica Giummolè & Paolo Vidoni, 2010. "Improved prediction limits for a general class of Gaussian models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 483-493, November.
    7. Hartman, Linda & Hossjer, Ola, 2008. "Fast kriging of large data sets with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2331-2349, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:1:p:175-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.