IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i1d10.1007_s00362-024-01641-2.html
   My bibliography  Save this article

Optimal prediction for quantiles and probabilities

Author

Listed:
  • Giovanni Fonseca

    (University of Udine)

  • Federica Giummolè

    (Ca’ Foscari University of Venice)

  • Paolo Vidoni

    (University of Udine)

Abstract

A prediction statement about a future random variable should always be accompanied by a measure of uncertainty and in particular it should be based on a so-called predictive distribution. The choice of a predictive distribution should be driven by the aim of the prediction itself, that usually is to compute predictive quantiles or predictive probabilities. Instead, it is common in the practice to use the same predictive distribution for both targets. The goal of this paper is twofold. First we provide a critical review of some important properties that a predictive distribution should possess, encouraging the correct choice of a predictive distribution in accordance to the predictive goal. Secondly, we propose suitable predictive distribution functions that satisfy the considered properties, to a high order of approximation. These are all in the form of asymptotic corrections of the plug-in distribution function. Some of them are already known in literature and some others are new proposals. In particular we introduce a new predictive distribution that may be useful to obtain calibrated predictions for the probabilities of a future random variable. The computation of the associated asymptotic expansion, when too difficult, can be substituted by simpler bootstrap procedures. The different predictive distribution functions are also compared in terms of mean squared error. As a side result, we show that the predictive distribution that minimises the mean squared error is also optimal with respect to the continuous ranked probability score. Some examples illustrate how to compute the new calibrated predictive distribution. Moreover, several simulation studies clearly show how the performance of different predictive distributions depends on the aim of the prediction and that the improvement can be substantial, in particular for the case of small and medium sample sizes.

Suggested Citation

  • Giovanni Fonseca & Federica Giummolè & Paolo Vidoni, 2025. "Optimal prediction for quantiles and probabilities," Statistical Papers, Springer, vol. 66(1), pages 1-26, January.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01641-2
    DOI: 10.1007/s00362-024-01641-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01641-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01641-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Vidoni, 2009. "Improved Prediction Intervals and Distribution Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 735-748, December.
    2. J. F. Lawless & Marc Fredette, 2005. "Frequentist prediction intervals and predictive distributions," Biometrika, Biometrika Trust, vol. 92(3), pages 529-542, September.
    3. Paolo Vidoni, 2003. "Prediction and calibration in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 169-185, March.
    4. Masao Ueki & Kaoru Fueda, 2007. "Adjusting estimative prediction limits," Biometrika, Biometrika Trust, vol. 94(2), pages 509-511.
    5. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidoni, Paolo, 2015. "Calibrated multivariate distributions for improved conditional prediction," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 16-25.
    2. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    3. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    4. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    5. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    6. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    7. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    8. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    9. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    10. Tsyplakov, Alexander, 2013. "Evaluation of Probabilistic Forecasts: Proper Scoring Rules and Moments," MPRA Paper 45186, University Library of Munich, Germany.
    11. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    12. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    13. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    14. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    15. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    16. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
    17. Elena Andreou & Andros Kourtellos, 2018. "Scoring rules for simple forecasting models: The case of Cyprus GDP and its sectors," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(1), pages 59-73, June.
    18. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    19. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.
    20. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01641-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.