IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v32y2008i10p2033-2045.html
   My bibliography  Save this article

Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets

Author

Listed:
  • Fusai, Gianluca
  • Marena, Marina
  • Roncoroni, Andrea

Abstract

We compute an analytical expression for the moment generating function of the joint random vector consisting of a spot price and its discretely monitored average for a large class of square-root price dynamics. This result, combined with the Fourier transform pricing method proposed by Carr and Madan [Carr, P., Madan D., 1999. Option valuation using the fast Fourier transform. Journal of Computational Finance 2(4), Summer, 61-73] allows us to derive a closed-form formula for the fair value of discretely monitored Asian-style options. Our analysis encompasses the case of commodity price dynamics displaying mean reversion and jointly fitting a quoted futures curve and the seasonal structure of spot price volatility. Four tests are conducted to assess the relative performance of the pricing procedure stemming from our formulae. Empirical results based on natural gas data from NYMEX and corn data from CBOT show a remarkable improvement over the main alternative techniques developed for pricing Asian-style options within the market standard framework of geometric Brownian motion.

Suggested Citation

  • Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
  • Handle: RePEc:eee:jbfina:v:32:y:2008:i:10:p:2033-2045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00427-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cartea, Álvaro & Williams, Thomas, 2008. "UK gas markets: The market price of risk and applications to multiple interruptible supply contracts," Energy Economics, Elsevier, vol. 30(3), pages 829-846, May.
    2. Bessembinder, Hendrik, et al, 1995. "Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure," Journal of Finance, American Finance Association, vol. 50(1), pages 361-375, March.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    5. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    6. Regnier, Eva, 2007. "Oil and energy price volatility," Energy Economics, Elsevier, vol. 29(3), pages 405-427, May.
    7. Levy, Edmond, 1992. "Pricing European average rate currency options," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 474-491, October.
    8. Angelos Dassios & Jayalaxshmi Nagaradjasarma, 2006. "The square-root process and Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 337-347.
    9. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    10. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    11. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    12. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    13. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    14. Steen Koekebakker & Gudbrand Lien, 2004. "Volatility and Price Jumps in Agricultural Futures Prices—Evidence from Wheat Options," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1018-1031.
    15. repec:dau:papers:123456789/1433 is not listed on IDEAS
    16. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    17. Dassios, Angelos & Nagaradjasarma, Jayalaxshmi, 2006. "The square-root process and Asian options," LSE Research Online Documents on Economics 2851, London School of Economics and Political Science, LSE Library.
    18. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    2. Ioannis Kyriakou & Nikos K. Nomikos & Nikos C. Papapostolou & Panos K. Pouliasis, 2016. "Affine†Structure Models and the Pricing of Energy Commodity Derivatives," European Financial Management, European Financial Management Association, vol. 22(5), pages 853-881, November.
    3. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    4. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    5. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, October.
    6. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    7. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    8. Nader Karimi & Hirbod Assa & Erfan Salavati & Hojatollah Adibi, 2023. "Calibration of Storage Model by Multi-Stage Statistical and Machine Learning Methods," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1437-1455, December.
    9. Ron Alquist & Gregory Bauer & Antonio Diez de los Rios, 2014. "What Does the Convenience Yield Curve Tell Us about the Crude Oil Market?," Staff Working Papers 14-42, Bank of Canada.
    10. Tore S. Kleppe & Atle Oglend, 2019. "Can limits‐to‐arbitrage from bounded storage improve commodity term‐structure modeling?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 865-889, July.
    11. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    12. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    13. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    14. Chung, Shing Fung & Wong, Hoi Ying, 2014. "Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 130-140.
    15. Jaime Casassus & Peng Liu & Ke Tang, 2011. "Relative Scarcity of Commodities with a Long-Term Economic Relationship and the Correlation of Futures Returns," Documentos de Trabajo 404, Instituto de Economia. Pontificia Universidad Católica de Chile..
    16. Hélyette Geman & Vu-Nhat Nguyen, 2005. "Soybean Inventory and Forward Curve Dynamics," Management Science, INFORMS, vol. 51(7), pages 1076-1091, July.
    17. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).
    18. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    19. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    20. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.

    More about this item

    Keywords

    C63 G13 Asian options Discrete monitoring Laplace transform Fourier transform Commodity markets Energy markets;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:10:p:2033-2045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.