IDEAS home Printed from https://ideas.repec.org/a/spt/stecon/v8y2019i1f8_1_5.html
   My bibliography  Save this article

Conditional Dependence Modelling with Regular Vine Copulas

Author

Listed:
  • Cyprian Omari
  • Peter Mwita
  • Anthony Waititu

Abstract

Modelling sophisticated high-dimensional dependence structures for financial assets in a portfolio framework require flexible dependence models. In this paper, a regular vine-copula based model is employed to analyze financial dependencies and co-movements of a six-dimensional portfolio of currency exchange rates starting from January 2001 to April 2018. The regular-vine copula based model employs partial correlations to construct the regular vine structure and offer superior flexibility in the selection of the distributions to model financial dependence structure. The model also captures the asymmetry between multivariate variables using bivariate copulas with flexible tail dependence. Empirical evidence suggests that co-movements in currency markets are most likely to experience a crash and boom together thus, concluding that currency markets are integrated due to the nature of the global financial systems. The C-Vine copula specification is favoured over the other copula specifications in modeling the dependence dynamics between currency exchange rates.Mathematics Subject Classification: 62H20, 62H12Keywords: Copula; regular vines; C-Vine, D-Vine; currency exchange rates; tail dependence; pair-copula constructions.

Suggested Citation

  • Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
  • Handle: RePEc:spt:stecon:v:8:y:2019:i:1:f:8_1_5
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JSEM%2fVol%208_1_5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoaek Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," LIDAM Reprints ISBA 2015003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    3. Marco Geidosch & Matthias Fischer, 2016. "Application of Vine Copulas to Credit Portfolio Risk Modeling," JRFM, MDPI, vol. 9(2), pages 1-15, June.
    4. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    5. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    6. Tobias Michael Erhardt & Claudia Czado & Ulf Schepsmeier, 2015. "R-vine models for spatial time series with an application to daily mean temperature," Biometrics, The International Biometric Society, vol. 71(2), pages 323-332, June.
    7. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    8. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    9. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    10. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    11. Rubén Albeiro Loaiza Maya & Jose Eduardo Gomez-Gonzalez & Luis Fernando Melo Velandia, 2015. "Latin American Exchange Rate Dependencies: A Regular Vine Copula Approach," Contemporary Economic Policy, Western Economic Association International, vol. 33(3), pages 535-549, July.
    12. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    13. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    14. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    15. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-235, April.
    16. Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(3), pages 347-363, July.
    17. Hobæk Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 1-13.
    18. Donnelly, Catherine & Embrechts, Paul, 2010. "The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 1-33, May.
    19. Carlos Almeida & Claudia Czado & Hans Manner, 2016. "Modeling high‐dimensional time‐varying dependence using dynamic D‐vine models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(5), pages 621-638, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    2. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    3. Çekin, Semih Emre & Pradhan, Ashis Kumar & Tiwari, Aviral Kumar & Gupta, Rangan, 2020. "Measuring co-dependencies of economic policy uncertainty in Latin American countries using vine copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 207-217.
    4. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    5. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    6. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    7. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    8. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    9. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    10. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    11. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    12. Min, Aleksey & Czado, Claudia, 2014. "SCOMDY models based on pair-copula constructions with application to exchange rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 523-535.
    13. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    14. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    15. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    16. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    17. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    18. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    19. Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
    20. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:stecon:v:8:y:2019:i:1:f:8_1_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.