IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp315-327.html
   My bibliography  Save this article

Covariance structure regularization via entropy loss function

Author

Listed:
  • Lin, Lijing
  • Higham, Nicholas J.
  • Pan, Jianxin

Abstract

The need to estimate structured covariance matrices arises in a variety of applications and the problem is widely studied in statistics. A new method is proposed for regularizing the covariance structure of a given covariance matrix whose underlying structure has been blurred by random noise, particularly when the dimension of the covariance matrix is high. The regularization is made by choosing an optimal structure from an available class of covariance structures in terms of minimizing the discrepancy, defined via the entropy loss function, between the given matrix and the class. A range of potential candidate structures comprising tridiagonal Toeplitz, compound symmetry, AR(1), and banded Toeplitz is considered. It is shown that for the first three structures local or global minimizers of the discrepancy can be computed by one-dimensional optimization, while for the fourth structure Newton’s method enables efficient computation of the global minimizer. Simulation studies are conducted, showing that the proposed new approach provides a reliable way to regularize covariance structures. The approach is also applied to real data analysis, demonstrating the usefulness of the proposed approach in practice.

Suggested Citation

  • Lin, Lijing & Higham, Nicholas J. & Pan, Jianxin, 2014. "Covariance structure regularization via entropy loss function," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 315-327.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:315-327
    DOI: 10.1016/j.csda.2013.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003575
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael G. Kenward, 1987. "A Method for Comparing Profiles of Repeated Measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 296-308, November.
    2. Jianxin Pan, 2003. "On modelling mean-covariance structures in longitudinal studies," Biometrika, Biometrika Trust, vol. 90(1), pages 239-244, March.
    3. Maboudou-Tchao, Edgard M. & Agboto, Vincent, 2013. "Monitoring the covariance matrix with fewer observations than variables," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 99-112.
    4. Vinciotti, Veronica & Hashem, Hussein, 2013. "Robust methods for inferring sparse network structures," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 84-94.
    5. Huajun Ye & Jianxin Pan, 2006. "Modelling of covariance structures in generalised estimating equations for longitudinal data," Biometrika, Biometrika Trust, vol. 93(4), pages 927-941, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    2. Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    3. Klein, Daniel & Pielaszkiewicz, Jolanta & Filipiak, Katarzyna, 2022. "Approximate normality in testing an exchangeable covariance structure under large- and high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Bayesian analysis of joint mean and covariance models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2504-2514, November.
    2. Luo, Renwen & Pan, Jianxin, 2022. "Conditional generalized estimating equations of mean-variance-correlation for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    4. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    5. Yu, Jing & Nummi, Tapio & Pan, Jianxin, 2022. "Mixture regression for longitudinal data based on joint mean–covariance model," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    6. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    7. Hongmei Lin & Wenchao Xu & Riquan Zhang & Jianhong Shi & Yuedong Wang, 2017. "Multiple-index varying-coefficient models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1960-1978, August.
    8. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    9. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    10. W. J. Krzanowski, 1999. "Antedependence models in the analysis of multi-group high-dimensional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 59-67.
    11. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    12. Rauf Ahmad, M. & Werner, C. & Brunner, E., 2008. "Analysis of high-dimensional repeated measures designs: The one sample case," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 416-427, December.
    13. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    14. Xu, Lin & Xiang, Sijia & Yao, Weixin, 2019. "Robust maximum Lq-likelihood estimation of joint mean–covariance models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 397-411.
    15. Jan Serroyen & Geert Molenberghs & Marc Aerts & Ellen Vloeberghs & Peter Paul De Deyn & Geert Verbeke, 2010. "Flexible estimation of serial correlation in nonlinear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 833-846.
    16. Huang, Youjun & Pan, Jianxin, 2021. "Joint generalized estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    17. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    18. Lee, Keunbaik & Yoo, Jae Keun, 2014. "Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 111-116.
    19. Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    20. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:315-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.