IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v192y2024ics0167947323002189.html
   My bibliography  Save this article

Discrepancy between structured matrices in the power analysis of a separability test

Author

Listed:
  • Filipiak, Katarzyna
  • Klein, Daniel
  • Mokrzycka, Monika

Abstract

An important task in the analysis of multivariate data is testing of the covariance matrix structure. In particular, for assessing separability, various tests have been proposed. However, the development of a method of measuring discrepancy between two covariance matrix structures, in relation to the study of the power of the test, remains an open problem. Therefore, a discrepancy measure is proposed such that for two arbitrary alternative hypotheses with the same value of discrepancy, the power of tests remains stable, while for increasing discrepancy the power increases. The basic hypothesis is related to the separable structure of the observation matrix under a doubly multivariate normal model, as assessed by the likelihood ratio and Rao score tests. It is shown that the particular one-parameter method and the Frobenius norm fail in the power analysis of tests, while the entropy and quadratic loss functions can be efficiently used to measure the discrepancy between separable and non-separable covariance structures for a multivariate normal distribution.

Suggested Citation

  • Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002189
    DOI: 10.1016/j.csda.2023.107907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323002189
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emilie Devijver & Mélina Gallopin, 2018. "Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 306-314, January.
    2. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    3. Soloveychik, I. & Trushin, D., 2016. "Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 92-113.
    4. Mitchell, Matthew W. & Genton, Marc G. & Gumpertz, Marcia L., 2006. "A likelihood ratio test for separability of covariances," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1025-1043, May.
    5. Magnus, Jan R. & Neudecker, H., 1986. "Symmetry, 0-1 Matrices and Jacobians: A Review," Econometric Theory, Cambridge University Press, vol. 2(2), pages 157-190, August.
    6. Lu, Nelson & Zimmerman, Dale L., 2005. "The likelihood ratio test for a separable covariance matrix," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 449-457, July.
    7. Lin, Lijing & Higham, Nicholas J. & Pan, Jianxin, 2014. "Covariance structure regularization via entropy loss function," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 315-327.
    8. Manceur, A.M. & Dutilleul, P., 2013. "Unbiased modified likelihood ratio tests for simple and double separability of a variance–covariance structure," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 631-636.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Seungkyu & Park, Seongoh & Lim, Johan & Lee, Sang Han, 2023. "Robust tests for scatter separability beyond Gaussianity," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    2. Katarzyna Filipiak & Daniel Klein & Anuradha Roy, 2015. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Working Papers 0148mss, College of Business, University of Texas at San Antonio.
    3. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    4. Guggenberger, Patrik & Kleibergen, Frank & Mavroeidis, Sophocles, 2023. "A test for Kronecker Product Structure covariance matrix," Journal of Econometrics, Elsevier, vol. 233(1), pages 88-112.
    5. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    6. Viroli, Cinzia, 2012. "On matrix-variate regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 296-309.
    7. Filipiak, Katarzyna & Klein, Daniel, 2017. "Estimation of parameters under a generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 73-86.
    8. Wang, Lili & Paul, Debashis, 2014. "Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→0," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 25-52.
    9. Seongoh Park & Johan Lim & Xinlei Wang & Sanghan Lee, 2019. "Permutation based testing on covariance separability," Computational Statistics, Springer, vol. 34(2), pages 865-883, June.
    10. Manceur, A.M. & Dutilleul, P., 2013. "Unbiased modified likelihood ratio tests for simple and double separability of a variance–covariance structure," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 631-636.
    11. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    12. D.A. Turkington, 1997. "Some results in matrix calculus and an example of their application to econometrics," Economics Discussion / Working Papers 97-07, The University of Western Australia, Department of Economics.
    13. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers 52/16, Institute for Fiscal Studies.
    14. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    15. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    16. Kim, Chulmin & Zimmerman, Dale L., 2012. "Unconstrained models for the covariance structure of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 104-118.
    17. HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," LIDAM Discussion Papers CORE 2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Maddalena Cavicchioli, 2016. "Weak VARMA representations of regime-switching state-space models," Statistical Papers, Springer, vol. 57(3), pages 705-720, September.
    19. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.