IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v107y2012icp104-118.html
   My bibliography  Save this article

Unconstrained models for the covariance structure of multivariate longitudinal data

Author

Listed:
  • Kim, Chulmin
  • Zimmerman, Dale L.

Abstract

The constraint that a covariance matrix must be positive definite presents difficulties for modeling its structure. Pourahmadi (1999, 2000) [18,19] proposed a parameterization of the covariance matrix for univariate longitudinal data in which the parameters are unconstrained, which is based on the modified Cholesky decomposition of the covariance matrix. We extend this approach to multivariate longitudinal data by developing a modified Cholesky block decomposition that provides an alternative unconstrained parameterization for the covariance matrix, and we propose parsimonious models within this parameterization. A Fisher scoring algorithm is developed for obtaining maximum likelihood estimates of parameters, assuming that the observations are normally distributed. The asymptotic distribution of the maximum likelihood estimators is derived. The performance of the estimators for finite samples is investigated by simulation and compared with that of estimators obtained under a separable (Kronecker product) covariance model. Estimation and model selection are illustrated using bivariate longitudinal data from a study of poplar growth.

Suggested Citation

  • Kim, Chulmin & Zimmerman, Dale L., 2012. "Unconstrained models for the covariance structure of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 104-118.
  • Handle: RePEc:eee:jmvana:v:107:y:2012:i:c:p:104-118
    DOI: 10.1016/j.jmva.2012.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1200005X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Nelson & Zimmerman, Dale L., 2005. "The likelihood ratio test for a separable covariance matrix," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 449-457, July.
    2. Mathew, Thomas, 1989. "MANOVA in the multivariate components of variance model," Journal of Multivariate Analysis, Elsevier, vol. 29(1), pages 30-38, April.
    3. Jianxin Pan, 2003. "On modelling mean-covariance structures in longitudinal studies," Biometrika, Biometrika Trust, vol. 90(1), pages 239-244, March.
    4. Dayanand Naik & Shantha Rao, 2001. "Analysis of multivariate repeated measures data with a Kronecker product structured covariance matrix," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(1), pages 91-105.
    5. Zhao Wei & Hou Wei & Littell Ramon C. & Wu Rongling, 2005. "Structured Antedependence Models for Functional Mapping of Multiple Longitudinal Traits," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    2. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    3. Rhee, Anbin & Kwak, Min-Sun & Lee, Keunbaik, 2022. "Robust modeling of multivariate longitudinal data using modified Cholesky and hypersphere decompositions," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    4. Lee, Keunbaik & Lee, Chang-Hoon & Kwak, Min-Sun & Jang, Eun Jin, 2021. "Analysis of multivariate longitudinal data using ARMA Cholesky and hypersphere decompositions," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    2. Manceur, A.M. & Dutilleul, P., 2013. "Unbiased modified likelihood ratio tests for simple and double separability of a variance–covariance structure," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 631-636.
    3. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    4. Martin Ohlson & Zhanna Andrushchenko & Dietrich Rosen, 2011. "Explicit estimators under m-dependence for a multivariate normal distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 29-42, February.
    5. Hao, Chengcheng & Liang, Yuli & Mathew, Thomas, 2016. "Testing variance parameters in models with a Kronecker product covariance structure," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 182-189.
    6. Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
    7. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    8. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    9. Viroli, Cinzia, 2012. "On matrix-variate regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 296-309.
    10. Filipiak, Katarzyna & Klein, Daniel, 2017. "Estimation of parameters under a generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 73-86.
    11. Lee, Keunbaik & Lee, Chang-Hoon & Kwak, Min-Sun & Jang, Eun Jin, 2021. "Analysis of multivariate longitudinal data using ARMA Cholesky and hypersphere decompositions," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    12. Katarzyna Filipiak & Daniel Klein & Anuradha Roy, 2015. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Working Papers 0148mss, College of Business, University of Texas at San Antonio.
    13. Anuradha Roy & Ricardo Leiva, 2008. "Testing of a Structures Covariance Matrix for Three-Level Repeated Measures Data," Working Papers 0037, College of Business, University of Texas at San Antonio.
    14. Jiguo Cao & Liangliang Wang & Zhongwen Huang & Junyi Gai & Rongling Wu, 2017. "Functional Mapping of Multiple Dynamic Traits," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 60-75, March.
    15. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    16. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    17. Guggenberger, Patrik & Kleibergen, Frank & Mavroeidis, Sophocles, 2023. "A test for Kronecker Product Structure covariance matrix," Journal of Econometrics, Elsevier, vol. 233(1), pages 88-112.
    18. Driezen, Kassandra & Adriaensen, Frank & Rondinini, Carlo & Doncaster, C. Patrick & Matthysen, Erik, 2007. "Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus)," Ecological Modelling, Elsevier, vol. 209(2), pages 314-322.
    19. Sean L Simpson & Lloyd J Edwards & Martin A Styner & Keith E Muller, 2014. "Kronecker Product Linear Exponent AR(1) Correlation Structures for Multivariate Repeated Measures," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    20. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:107:y:2012:i:c:p:104-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.