IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i3d10.1007_s11749-024-00922-0.html
   My bibliography  Save this article

Testing covariance structures belonging to a quadratic subspace under a doubly multivariate model

Author

Listed:
  • Katarzyna Filipiak

    (Poznań University of Technology)

  • Mateusz John

    (Poznań University of Technology)

  • Yuli Liang

    (Linnaeus University)

Abstract

A hypothesis related to the block structure of a covariance matrix under the doubly multivariate normal model is studied. It is assumed that the block structure of the covariance matrix belongs to a quadratic subspace, and under the null hypothesis, each block of the covariance matrix also has a structure belonging to some quadratic subspace. The Rao score and the likelihood ratio test statistics are derived, and the exact distribution of the likelihood ratio test is determined. Simulation studies show the advantage of the Rao score test over the likelihood ratio test in terms of speed of convergence to the limiting chi-square distribution, while both proposed tests are competitive in terms of their power. The results are applied to both simulated and real-life example data.

Suggested Citation

  • Katarzyna Filipiak & Mateusz John & Yuli Liang, 2024. "Testing covariance structures belonging to a quadratic subspace under a doubly multivariate model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 847-876, September.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00922-0
    DOI: 10.1007/s11749-024-00922-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00922-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00922-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuli Liang & Dietrich Rosen & Tatjana Rosen, 2015. "On estimation in hierarchical models with block circular covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 773-791, August.
    2. Lin, Lijing & Higham, Nicholas J. & Pan, Jianxin, 2014. "Covariance structure regularization via entropy loss function," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 315-327.
    3. Klein, Daniel & Pielaszkiewicz, Jolanta & Filipiak, Katarzyna, 2022. "Approximate normality in testing an exchangeable covariance structure under large- and high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Kato, Naohiro & Yamada, Takayuki & Fujikoshi, Yasunori, 2010. "High-dimensional asymptotic expansion of LR statistic for testing intraclass correlation structure and its error bound," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 101-112, January.
    5. Linqi Yi & Junshan Xie, 2018. "A high-dimensional likelihood ratio test for circular symmetric covariance structure," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(6), pages 1392-1402, March.
    6. Katarzyna Filipiak & Mateusz John & Daniel Klein, 2023. "Testing independence under a block compound symmetry covariance structure," Statistical Papers, Springer, vol. 64(2), pages 677-704, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Daniel & Pielaszkiewicz, Jolanta & Filipiak, Katarzyna, 2022. "Approximate normality in testing an exchangeable covariance structure under large- and high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Kato, Naohiro & Kuriki, Satoshi, 2013. "Likelihood ratio tests for positivity in polynomial regressions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 334-346.
    3. Timothy Opheim & Anuradha Roy, 2021. "Linear models for multivariate repeated measures data with block exchangeable covariance structure," Computational Statistics, Springer, vol. 36(3), pages 1931-1963, September.
    4. Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Hao, Chengcheng & Liang, Yuli & Mathew, Thomas, 2016. "Testing variance parameters in models with a Kronecker product covariance structure," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 182-189.
    7. Katarzyna Filipiak & Mateusz John & Daniel Klein, 2023. "Testing independence under a block compound symmetry covariance structure," Statistical Papers, Springer, vol. 64(2), pages 677-704, April.
    8. Katarzyna Filipiak & Tõnu Kollo, 2024. "Covariance structure tests for multivariate t-distribution," Statistical Papers, Springer, vol. 65(7), pages 4537-4566, September.
    9. Wang, Xuanci & Zhang, Bin, 2024. "Target selection in shrinkage estimation of covariance matrix: A structural similarity approach," Statistics & Probability Letters, Elsevier, vol. 208(C).
    10. Yuli Liang & Dietrich Rosen & Tatjana Rosen, 2021. "On properties of Toeplitz-type covariance matrices in models with nested random effects," Statistical Papers, Springer, vol. 62(6), pages 2509-2528, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00922-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.