IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v20y2019i4p59-70n8.html
   My bibliography  Save this article

Linear Cholesky Decomposition Of Covariance Matrices In Mixed Models With Correlated Random Effects

Author

Listed:
  • Rabe Anasu

    (Department of Mathematics and Computer Science, Umaru Musa ’Yaradua University, PMB 2218, Dutsinma Road, Katsina, Katsina State, Nigeria .)

  • Shangodoyin D. K.

    (Department of Statistics, University of Botswana, Corner of Notwane and Mobuto Road, Pvt Bag 00706, Gaborone, Botswana .)

  • Thaga K.

    (Department of Statistics, University of Botswana, Corner of Notwane and Mobuto Road, Pvt Bag 00706, Gaborone, Botswana .)

Abstract

Modelling the covariance matrix in linear mixed models provides an additional advantage in making inference about subject-specific effects, particularly in the analysis of repeated measurement data, where time-ordering of the responses induces significant correlation. Some difficulties encountered in these modelling procedures include high dimensionality and statistical interpretability of parameters, positive definiteness constraint and violation of model assumptions. One key assumption in linear mixed models is that random errors and random effects are independent, and its violation leads to biased and inefficient parameter estimates. To minimize these drawbacks, we developed a procedure that accounts for correlations induced by violation of this key assumption. In recent literature, variants of Cholesky decomposition were employed to circumvent the positive definiteness constraint, with parsimony achieved by joint modelling of mean and covariance parameters using covariates. In this article, we developed a linear Cholesky decomposition of the random effects covariance matrix, providing a framework for inference that accounts for correlations induced by covariate(s) shared by both fixed and random effects design matrices, a circumstance leading to lack of independence between random errors and random effects. The proposed decomposition is particularly useful in parameter estimation using the maximum likelihood and restricted/residual maximum likelihood procedures.

Suggested Citation

  • Rabe Anasu & Shangodoyin D. K. & Thaga K., 2019. "Linear Cholesky Decomposition Of Covariance Matrices In Mixed Models With Correlated Random Effects," Statistics in Transition New Series, Statistics Poland, vol. 20(4), pages 59-70, December.
  • Handle: RePEc:vrs:stintr:v:20:y:2019:i:4:p:59-70:n:8
    DOI: 10.21307/stattrans-2019-034
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2019-034
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2019-034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianxin Pan, 2003. "On modelling mean-covariance structures in longitudinal studies," Biometrika, Biometrika Trust, vol. 90(1), pages 239-244, March.
    2. Zhen Chen & David B. Dunson, 2003. "Random Effects Selection in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 59(4), pages 762-769, December.
    3. Weiping Zhang & Chenlei Leng, 2012. "A moving average Cholesky factor model in covariance modelling for longitudinal data," Biometrika, Biometrika Trust, vol. 99(1), pages 141-150.
    4. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    5. Lee, Keunbaik & Baek, Changryong & Daniels, Michael J., 2017. "ARMA Cholesky factor models for the covariance matrix of linear models," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 267-280.
    6. Jeremy T. Gaskins & Michael J. Daniels, 2013. "A nonparametric prior for simultaneous covariance estimation," Biometrika, Biometrika Trust, vol. 100(1), pages 125-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anasu Rabe & D. K. Shangodoyin & K. Thaga, 2019. "Linear Cholesky Decomposition Of Covariance Matrices In Mixed Models With Correlated Random Effects," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 59-70, December.
    2. Keunbaik Lee & Hoimin Jung & Jae Keun Yoo, 2019. "Modeling of the ARMA random effects covariance matrix in logistic random effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 281-299, June.
    3. Wenqi Zhang & William Kleiber & Bri‐Mathias Hodge & Barry Mather, 2022. "A nonstationary and non‐Gaussian moving average model for solar irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    4. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    5. Lee, Keunbaik & Lee, Chang-Hoon & Kwak, Min-Sun & Jang, Eun Jin, 2021. "Analysis of multivariate longitudinal data using ARMA Cholesky and hypersphere decompositions," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Lee, Keunbaik & Yoo, Jae Keun, 2014. "Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 111-116.
    7. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    8. Lee, Keunbaik & Baek, Changryong & Daniels, Michael J., 2017. "ARMA Cholesky factor models for the covariance matrix of linear models," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 267-280.
    9. Luo, Renwen & Pan, Jianxin, 2022. "Conditional generalized estimating equations of mean-variance-correlation for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Lu, Fei & Xue, Liugen & Cai, Xiong, 2020. "GEE analysis in joint mean-covariance model for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 160(C).
    11. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    12. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    13. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    14. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    15. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    16. Kim, Chulmin & Zimmerman, Dale L., 2012. "Unconstrained models for the covariance structure of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 104-118.
    17. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Bayesian analysis of joint mean and covariance models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2504-2514, November.
    18. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    19. Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
    20. Jing Lv & Chaohui Guo, 2019. "Quantile estimations via modified Cholesky decomposition for longitudinal single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1163-1199, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:20:y:2019:i:4:p:59-70:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.