IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp615-632.html
   My bibliography  Save this article

Reversible jump MCMC for nonparametric drift estimation for diffusion processes

Author

Listed:
  • van der Meulen, Frank
  • Schauer, Moritz
  • van Zanten, Harry

Abstract

In the context of nonparametric Bayesian estimation a Markov chain Monte Carlo algorithm is devised and implemented to sample from the posterior distribution of the drift function of a continuously or discretely observed one-dimensional diffusion. The drift is modeled by a scaled linear combination of basis functions with a Gaussian prior on the coefficients. The scaling parameter is equipped with a partially conjugate prior. The number of basis functions in the drift is equipped with a prior distribution as well. For continuous data, a reversible jump Markov chain algorithm enables the exploration of the posterior over models of varying dimension. Subsequently, it is explained how data-augmentation can be used to extend the algorithm to deal with diffusions observed discretely in time. Some examples illustrate that the method can give satisfactory results. In these examples a comparison is made with another existing method as well.

Suggested Citation

  • van der Meulen, Frank & Schauer, Moritz & van Zanten, Harry, 2014. "Reversible jump MCMC for nonparametric drift estimation for diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 615-632.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:615-632
    DOI: 10.1016/j.csda.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731300090X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    2. Pokern, Y. & Stuart, A.M. & van Zanten, J.H., 2013. "Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 603-628.
    3. repec:dau:papers:123456789/1908 is not listed on IDEAS
    4. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. Omiros Papaspiliopoulos & Yvo Pokern & Gareth O. Roberts & Andrew M. Stuart, 2012. "Nonparametric estimation of diffusions: a differential equations approach," Biometrika, Biometrika Trust, vol. 99(3), pages 511-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Meulen & Moritz Schauer & Jan Waaij, 2018. "Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 603-628, October.
    2. van Waaij, Jan & van Zanten, Harry, 2017. "Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 93-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    2. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    3. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    4. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    5. Fabian Dunker & Thorsten Hohage, 2014. "On parameter identification in stochastic differential equations by penalized maximum likelihood," Papers 1404.0651, arXiv.org.
    6. Christian P. Robert, 2013. "Bayesian Computational Tools," Working Papers 2013-45, Center for Research in Economics and Statistics.
    7. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    8. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    9. Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
    10. Yuan Shen & Dan Cornford & Manfred Opper & Cedric Archambeau, 2012. "Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions," Computational Statistics, Springer, vol. 27(1), pages 149-176, March.
    11. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    12. Bin Zhu & Peter X.-K. Song & Jeremy M.G. Taylor, 2011. "Stochastic Functional Data Analysis: A Diffusion Model-Based Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1295-1304, December.
    13. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    14. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    15. Giorgos Sermaidis & Omiros Papaspiliopoulos & Gareth O. Roberts & Alexandros Beskos & Paul Fearnhead, 2013. "Markov Chain Monte Carlo for Exact Inference for Diffusions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 294-321, June.
    16. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    17. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    18. Frank Meulen & Moritz Schauer & Jan Waaij, 2018. "Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 603-628, October.
    19. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.
    20. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:615-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.