IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i3d10.1007_s11203-017-9163-7.html
   My bibliography  Save this article

Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions

Author

Listed:
  • Frank Meulen

    (TU Delft)

  • Moritz Schauer

    (Leiden University)

  • Jan Waaij

    (Korteweg-de Vries Institute for Mathematics)

Abstract

We consider the problem of nonparametric estimation of the drift of a continuously observed one-dimensional diffusion with periodic drift. Motivated by computational considerations, van der Meulen et al. (Comput Stat Data Anal 71:615–632, 2014) defined a prior on the drift as a randomly truncated and randomly scaled Faber–Schauder series expansion with Gaussian coefficients. We study the behaviour of the posterior obtained from this prior from a frequentist asymptotic point of view. If the true data generating drift is smooth, it is proved that the posterior is adaptive with posterior contraction rates for the $$L_2$$ L 2 -norm that are optimal up to a log factor. Contraction rates in $$L_p$$ L p -norms with $$p\in (2,\infty ]$$ p ∈ ( 2 , ∞ ] are derived as well.

Suggested Citation

  • Frank Meulen & Moritz Schauer & Jan Waaij, 2018. "Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 603-628, October.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:3:d:10.1007_s11203-017-9163-7
    DOI: 10.1007/s11203-017-9163-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-017-9163-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-017-9163-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Meulen, Frank & Schauer, Moritz & van Zanten, Harry, 2014. "Reversible jump MCMC for nonparametric drift estimation for diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 615-632.
    2. Omiros Papaspiliopoulos & Yvo Pokern & Gareth O. Roberts & Andrew M. Stuart, 2012. "Nonparametric estimation of diffusions: a differential equations approach," Biometrika, Biometrika Trust, vol. 99(3), pages 511-531.
    3. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    4. Pokern, Y. & Stuart, A.M. & van Zanten, J.H., 2013. "Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 603-628.
    5. Strauch, Claudia, 2015. "Sharp adaptive drift estimation for ergodic diffusions: The multivariate case," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2562-2602.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Dunker & Thorsten Hohage, 2014. "On parameter identification in stochastic differential equations by penalized maximum likelihood," Papers 1404.0651, arXiv.org.
    2. van Waaij, Jan & van Zanten, Harry, 2017. "Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 93-99.
    3. van der Meulen, Frank & Schauer, Moritz & van Zanten, Harry, 2014. "Reversible jump MCMC for nonparametric drift estimation for diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 615-632.
    4. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    5. Pokern, Y. & Stuart, A.M. & van Zanten, J.H., 2013. "Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 603-628.
    6. Wooyong Lee & Priscilla E. Greenwood & Nancy Heckman & Wolfgang Wefelmeyer, 2017. "Pre-averaged kernel estimators for the drift function of a diffusion process in the presence of microstructure noise," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 237-252, July.
    7. Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
    8. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    9. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    10. Gwangsu Kim & Yongdai Kim & Taeryon Choi, 2017. "Bayesian Analysis of the Proportional Hazards Model with Time-Varying Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 524-544, June.
    11. Comte, Fabienne & Genon-Catalot, Valentine, 2021. "Drift estimation on non compact support for diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 174-207.
    12. Das, Priyam & Ghosal, Subhashis, 2017. "Bayesian quantile regression using random B-spline series prior," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 121-143.
    13. Weining Shen & Subhashis Ghosal, 2017. "Posterior Contraction Rates of Density Derivative Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-354, August.
    14. Roy, Arkaprava & Ghosal, Subhashis, 2022. "Optimal Bayesian smoothing of functional observations over a large graph," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:3:d:10.1007_s11203-017-9163-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.