Markov Chain Monte Carlo for Exact Inference for Diffusions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2007.
"Inference for stochastic volatility model using time change transformations,"
MPRA Paper
5697, University Library of Munich, Germany.
- Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2010. "Inference for stochastic volatility models using time change transformations," LSE Research Online Documents on Economics 31421, London School of Economics and Political Science, LSE Library.
- Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
- Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
- Julie Lyng Forman & Michael Sørensen, 2008.
"The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
- Michael Sørensen & Julie Lyng Forman, 2007. "The Pearson diffusions: A class of statistically tractable diffusion processes," CREATES Research Papers 2007-28, Department of Economics and Business Economics, Aarhus University.
- Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
- Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393, May.
- Patrick E. Brown & Gareth O. Roberts & Kjetil F. Kåresen & Stefano Tonellato, 2000. "Blur‐generated non‐separable space–time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 847-860.
- Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
- Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
- Tina Hviid Rydberg, 1997. "A note on the existence of unique equivalent martingale measures in a Markovian setting," Finance and Stochastics, Springer, vol. 1(3), pages 251-257.
- Sekhon, Jasjeet S., 2011. "Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i07).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dennis Kristensen & Young Jun Lee & Antonio Mele, 2023. "Closed-form approximations of moments and densities of continuous-time Markov models," Papers 2308.09009, arXiv.org.
- Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
- Salima El Kolei & Fabien Navarro, 2022. "Contrast estimation for noisy observations of diffusion processes via closed-form density expansions," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 303-336, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013.
"Advanced MCMC methods for sampling on diffusion pathspace,"
Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
- Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," LSE Research Online Documents on Economics 46433, London School of Economics and Political Science, LSE Library.
- Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
- Yuan Shen & Dan Cornford & Manfred Opper & Cedric Archambeau, 2012. "Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions," Computational Statistics, Springer, vol. 27(1), pages 149-176, March.
- S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
- Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
- Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007.
"Likelihood-based inference for correlated diffusions,"
MPRA Paper
5696, University Library of Munich, Germany.
- Konstantinos Kalogeropoulos & Petros Dellaportas & Gareth O. Roberts, 2007. "Likelihood-based inference for correlated diffusions," Papers 0711.1595, arXiv.org.
- Mogens Bladt & Samuel Finch & Michael Sørensen, 2016.
"Simulation of multivariate diffusion bridges,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
- Mogens Bladt & Samuel Finch & Michael Sørensen, 2014. "Simulation of multivariate diffusion bridges," CREATES Research Papers 2014-16, Department of Economics and Business Economics, Aarhus University.
- Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
- Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random‐weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512, September.
- Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
- Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.
- Ioannis Bournakis & Mike Tsionas, 2024.
"A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
- Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
- Almut Veraart & Luitgard Veraart, 2012.
"Stochastic volatility and stochastic leverage,"
Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
- Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
- Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
- Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
- Roberto León-González, 2019.
"Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
- Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 14-12, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez, 2018. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 17-16, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," Working Paper series 19_14, Rimini Centre for Economic Analysis.
- Roberto Leon-Gonzalez, 2015. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 15-17, National Graduate Institute for Policy Studies.
- Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007.
"Indirect robust estimation of the short-term interest rate process,"
Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
- Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2005. "Indirect Robust Estimation of the Short-term Interest Rate Process," Working Paper Series 2005-4, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2007. "Indirect robust estimation of the short-term interest rate process," Post-Print hal-00463251, HAL.
- Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2005. "Indirect Robust Estimation of the Short-term interest Rate Process," FAME Research Paper Series rp135, International Center for Financial Asset Management and Engineering.
- Aliu, A. Hassan & Abiodun A. A. & Ipinyomi R.A., 2017. "Statistical Inference for Discretely Observed Diffusion Epidemic Models," International Journal of Mathematics Research, Conscientia Beam, vol. 6(1), pages 29-35.
- Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
- Vilda Purutçuoğlu, 2013. "Inference of the stochastic MAPK pathway by modified diffusion bridge method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 415-429, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:40:y:2013:i:2:p:294-321. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.