IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v123y2017icp93-99.html
   My bibliography  Save this article

Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling

Author

Listed:
  • van Waaij, Jan
  • van Zanten, Harry

Abstract

We study random series priors for estimating a functional parameter f∈L2[0,1]. We show that with a series prior with random truncation, Gaussian coefficients, and inverse gamma multiplicative scaling, it is possible to achieve posterior contraction at optimal rates and adaptation to arbitrary degrees of smoothness. We present general results that can be combined with existing rate of contraction results for various nonparametric estimation problems. We give concrete examples for signal estimation in white noise and drift estimation for a one-dimensional SDE.

Suggested Citation

  • van Waaij, Jan & van Zanten, Harry, 2017. "Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 93-99.
  • Handle: RePEc:eee:stapro:v:123:y:2017:i:c:p:93-99
    DOI: 10.1016/j.spl.2016.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216302930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Meulen, Frank & Schauer, Moritz & van Zanten, Harry, 2014. "Reversible jump MCMC for nonparametric drift estimation for diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 615-632.
    2. repec:dau:papers:123456789/11426 is not listed on IDEAS
    3. repec:dau:papers:123456789/7335 is not listed on IDEAS
    4. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    5. Julyan Arbel & Ghislaine Gayraud & Judith Rousseau, 2013. "Bayesian Optimal Adaptive Estimation Using a Sieve Prior," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 549-570, September.
    6. Julyan Arbel & Ghislaine Gayraud & Judith Rousseau, 2013. "Bayesian Optimal Adaptive Estimation Using a Sieve prior," Working Papers 2013-19, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
    2. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    3. I. Votsi & G. Gayraud & V. S. Barbu & N. Limnios, 2021. "Hypotheses testing and posterior concentration rates for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 707-732, October.
    4. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    5. Zhe Wang & Ryan Martin, 2021. "Gibbs posterior inference on a Levy density under discrete sampling," Papers 2109.06567, arXiv.org.
    6. Frank Meulen & Moritz Schauer & Jan Waaij, 2018. "Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 603-628, October.
    7. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    8. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    9. Gwangsu Kim & Yongdai Kim & Taeryon Choi, 2017. "Bayesian Analysis of the Proportional Hazards Model with Time-Varying Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 524-544, June.
    10. Das, Priyam & Ghosal, Subhashis, 2017. "Bayesian quantile regression using random B-spline series prior," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 121-143.
    11. Weining Shen & Subhashis Ghosal, 2017. "Posterior Contraction Rates of Density Derivative Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-354, August.
    12. Roy, Arkaprava & Ghosal, Subhashis, 2022. "Optimal Bayesian smoothing of functional observations over a large graph," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:123:y:2017:i:c:p:93-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.