Evaluation of the Fisher information matrix in nonlinear mixed effect models using adaptive Gaussian quadrature
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2014.06.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
- Cong Han & Kathryn Chaloner, 2004. "Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics," Biometrics, The International Biometric Society, vol. 60(1), pages 25-33, March.
- Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.
- Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ueckert, Sebastian & Mentré, France, 2017. "A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 203-219.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Allassonnière, Stéphanie & Chevallier, Juliette, 2021. "A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Budhi Arta Surya, 2021. "Some results on maximum likelihood from incomplete data: finite sample properties and improved M-estimator for resampling," Papers 2108.01243, arXiv.org, revised Jul 2022.
- Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
- Munch, Jakob R. & Nguyen, Daniel X., 2014.
"Decomposing firm-level sales variation,"
Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 317-334.
- Jakob R. Munch & Daniel X., 2008. "Decomposing Firm-level Sales Variation," EPRU Working Paper Series 2009-05, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics, revised Jun 2009.
- Baey, Charlotte & Cournède, Paul-Henry & Kuhn, Estelle, 2019. "Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 107-122.
- Daniel B. Reeves & Christian Gaebler & Thiago Y. Oliveira & Michael J. Peluso & Joshua T. Schiffer & Lillian B. Cohn & Steven G. Deeks & Michel C. Nussenzweig, 2023. "Impact of misclassified defective proviruses on HIV reservoir measurements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Di Mari, Roberto & Bakk, Zsuzsa & Oser, Jennifer & Kuha, Jouni, 2023. "A two-step estimator for multilevel latent class analysis with covariates," LSE Research Online Documents on Economics 119994, London School of Economics and Political Science, LSE Library.
- Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012.
"Computing and estimating information matrices of weak ARMA models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
- Boubacar Mainassara, Yacouba & Carbon, Michel & Francq, Christian, 2010. "Computing and estimating information matrices of weak arma models," MPRA Paper 27685, University Library of Munich, Germany.
- Sanjoy Sinha, 2013. "Robust designs for multivariate logistic regression," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 157-173, September.
- Zhou, Lin & Tang, Yayong, 2021. "Linearly preconditioned nonlinear conjugate gradient acceleration of the PX-EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
- Ryan, Elizabeth G. & Drovandi, Christopher C. & Pettitt, Anthony N., 2015. "Simulation-based fully Bayesian experimental design for mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 26-39.
- H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
- Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022.
"On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de,"
Working Papers
hal-03639951, HAL.
- Sodjahin, Ibirénoyé Honoré Romaric & Féménia, Fabienne & Koutchade, Obafémi Philippe & Carpentier, Alain, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Working Papers 320398, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
- Ibirénoyé Honoré Romaric Sodjahin & Fabienne Femenia & Obafémi Philippe Koutchade & Alain Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Working Papers SMART 22-02, INRAE UMR SMART.
- Ibirénoyé Honoré Romaric Sodjahin & Fabienne Femenia & Obafémi, Philippe Koutchadé & Alain Carpentier, 2023. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Post-Print hal-04667088, HAL.
- Hong-Yan Jiang & Rong-Xian Yue, 2019. "Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors," Computational Statistics, Springer, vol. 34(1), pages 71-87, March.
- Elson Tomás & Susana Vinga & Alexandra M. Carvalho, 2017. "Unsupervised learning of pharmacokinetic responses," Computational Statistics, Springer, vol. 32(2), pages 409-428, June.
- Wang, Xiaoning & Schumitzky, Alan & D'Argenio, David Z., 2007. "Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6614-6623, August.
- Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
- De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
- Deb Partha & Trivedi Pravin K., 2013.
"Finite Mixture for Panels with Fixed Effects,"
Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 35-51, July.
- Partha Deb & Pravin Trivedi, 2011. "Finite Mixture for Panels with Fixed Effects," Economics Working Paper Archive at Hunter College 432, Hunter College Department of Economics.
- Deb, P & Trivedi, P, 2011. "Finite Mixture for Panels with Fixed Effects," Health, Econometrics and Data Group (HEDG) Working Papers 11/03, HEDG, c/o Department of Economics, University of York.
More about this item
Keywords
Design; Dose–response studies; Fisher information matrix; Adaptive Gaussian quadrature; Linearisation; Nonlinear mixed effect model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:57-69. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.