IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v110y2016icp84-93.html
   My bibliography  Save this article

Efficient estimation for the heteroscedastic single-index varying coefficient models

Author

Listed:
  • Lai, Peng
  • Zhang, Qingzhao
  • Lian, Heng
  • Wang, Qihua

Abstract

We propose a semiparametric estimator for the heteroscedastic single-index varying coefficient model. The estimator is proved to attain the semiparametric efficiency bound. Some simulation studies and a real data application are conducted to evaluate the proposed methods.

Suggested Citation

  • Lai, Peng & Zhang, Qingzhao & Lian, Heng & Wang, Qihua, 2016. "Efficient estimation for the heteroscedastic single-index varying coefficient models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 84-93.
  • Handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:84-93
    DOI: 10.1016/j.spl.2015.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215003946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    2. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    3. Yanyuan Ma & Liping Zhu, 2013. "Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 305-322, March.
    4. Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
    5. Huang, Zhensheng & Pang, Zhen & Zhang, Riquan, 2013. "Adaptive profile-empirical-likelihood inferences for generalized single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 70-82.
    6. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    7. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Ruiqin & Xue, Liugen & Xu, Dengke, 2016. "Automatic variable selection for varying coefficient models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 84-90.
    2. Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    2. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.
    3. Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.
    4. Peirong Xu & Jun Zhang & Xingfang Huang & Tao Wang, 2016. "Efficient estimation for marginal generalized partially linear single-index models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-431, September.
    5. Chaohua Dong & Jiti Gao & Dag Tjostheim, 2014. "Estimation for Single-index and Partially Linear Single-index Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 7/14, Monash University, Department of Econometrics and Business Statistics.
    6. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    7. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    8. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    9. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    10. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    11. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
    12. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    13. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Yang, Suigen & Xue, Liugen & Li, Gaorong, 2014. "Simultaneous confidence band for single-index random effects models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 6-14.
    15. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.
    16. Zhang, Jun & Zhu, Li-Xing & Liang, Hua, 2012. "Nonlinear models with measurement errors subject to single-indexed distortion," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 1-23.
    17. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    18. Zhang, Jun & Gai, Yujie & Wu, Ping, 2013. "Estimation in linear regression models with measurement errors subject to single-indexed distortion," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 103-120.
    19. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    20. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:84-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.