IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v61y2013icp148-157.html
   My bibliography  Save this article

A hyper-Poisson regression model for overdispersed and underdispersed count data

Author

Listed:
  • Sáez-Castillo, A.J.
  • Conde-Sánchez, A.

Abstract

The Poisson regression model is the most common framework for modeling count data, but it is constrained by its equidispersion assumption. The hyper-Poisson regression model described in this paper generalizes it and allows for over- and under-dispersion, although, unlike other models with the same property, it introduces the regressors in the equation of the mean. Additionally, regressors may also be introduced in the equation of the dispersion parameter, in such a way that it is possible to fit data that present overdispersion and underdispersion in different levels of the observations. Two applications illustrate that the model can provide more accurate fits than those provided by alternative usual models.

Suggested Citation

  • Sáez-Castillo, A.J. & Conde-Sánchez, A., 2013. "A hyper-Poisson regression model for overdispersed and underdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 148-157.
  • Handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:148-157
    DOI: 10.1016/j.csda.2012.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312004434
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winkelmann, Rainer, 1995. "Duration Dependence and Dispersion in Count-Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 467-474, October.
    2. M. J. Faddy & D. M. Smith, 2011. "Analysis of count data with covariate dependence in both mean and variance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2683-2694, February.
    3. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    4. Garay, Aldo M. & Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Lachos, Víctor H., 2011. "On estimation and influence diagnostics for zero-inflated negative binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1304-1318, March.
    5. McShane, Blake & Adrian, Moshe & Bradlow, Eric T & Fader, Peter S, 2008. "Count Models Based on Weibull Interarrival Times," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 369-378.
    6. Xu, Hai-Yan & Xie, Min & Goh, Thong Ngee & Fu, Xiuju, 2012. "A model for integer-valued time series with conditional overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4229-4242.
    7. Winkelmann, Rainer & Zimmermann, Klaus F., 1991. "A new approach for modeling economic count data," Economics Letters, Elsevier, vol. 37(2), pages 139-143, October.
    8. Cameron, A Colin & Johansson, Per, 1997. "Count Data Regression Using Series Expansions: With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 203-223, May-June.
    9. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, October.
    10. Weiren Wang & Felix Famoye, 1997. "Modeling household fertility decisions with generalized Poisson regression," Journal of Population Economics, Springer;European Society for Population Economics, vol. 10(3), pages 273-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magali Aubert & Jean Marie Codron & Sylvain Rousset & Murat Yercan, 2017. "Which factors lead tomato growers to implement integrated pest management? Evidence from Turkey," Post-Print hal-02735805, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    2. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    3. Gregori Baetschmann & Rainer Winkelmann, 2014. "A dynamic hurdle model for zero-inflated count data: with an application to health care utilization," ECON - Working Papers 151, Department of Economics - University of Zurich.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    6. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    7. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
    8. Alison L. Booth & Hiau Joo Kee, 2009. "Intergenerational Transmission of Fertility Patterns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 183-208, April.
    9. Rainer Winkelmann, 2015. "Counting on count data models," IZA World of Labor, Institute of Labor Economics (IZA), pages 148-148, May.
    10. Smith, David M. & Faddy, Malcolm J., 2016. "Mean and Variance Modeling of Under- and Overdispersed Count Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i06).
    11. Bilal Barakat, 2017. "Generalised count distributions for modelling parity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(26), pages 745-758.
    12. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    13. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    14. Margarita E. Romero Rodríguez & Enrique Los Arcos & Victor Cano Fernández & Miguel Sánchez Padrón, 2001. "Modelo para datos de recuentro de corte transversal con exceso de ceros. Aplicación a citas patentes," Documentos de trabajo conjunto ULL-ULPGC 2001-05, Facultad de Ciencias Económicas de la ULPGC.
    15. Glenn Ellison & Ashley Swanson, 2012. "Heterogeneity in High Math Achievement Across Schools: Evidence from the American Mathematics Competitions," NBER Working Papers 18277, National Bureau of Economic Research, Inc.
    16. Carl Lee & Felix Famoye & Alfred Akinsete, 2021. "Generalized Count Data Regression Models and Their Applications to Health Care Data," Annals of Data Science, Springer, vol. 8(2), pages 367-386, June.
    17. S. Hadi Khazraee & Antonio Jose Sáez‐Castillo & Srinivas Reddy Geedipally & Dominique Lord, 2015. "Application of the Hyper‐Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 919-930, May.
    18. Hossein Zamani & Pouya Faroughi & Noriszura Ismail, 2016. "Bivariate generalized Poisson regression model: applications on health care data," Empirical Economics, Springer, vol. 51(4), pages 1607-1621, December.
    19. Fatemeh Hassanzadeh & Iraj Kazemi, 2017. "Regression modeling of one-inflated positive count data," Statistical Papers, Springer, vol. 58(3), pages 791-809, September.
    20. Wen-Jen Tsay, 2007. "The Fertility of Second-Generation Political Immigrants in Taiwan," IEAS Working Paper : academic research 07-A004, Institute of Economics, Academia Sinica, Taipei, Taiwan.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:148-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.