IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v26y2008p369-378.html
   My bibliography  Save this article

Count Models Based on Weibull Interarrival Times

Author

Listed:
  • McShane, Blake
  • Adrian, Moshe
  • Bradlow, Eric T
  • Fader, Peter S

Abstract

The widespread popularity and use of both the Poisson and the negative binomial models for count data arise, in part, from their derivation as the number of arrivals in a given time period assuming exponentially distributed interarrival times (without and with heterogeneity in the underlying base rates, respectively). However, with that clean theory come some limitations including limited flexibility in the assumed underlying arrival rate distribution and the inability to model underdispersed counts (variance less than the mean). Although extant research has addressed some of these issues, there still remain numerous valuable extensions. In this research, we present a model that, due to computational tractability, was previously thought to be infeasible. In particular, we introduce here a generalized model for count data based upon an assumed Weibull interarrival process that nests the Poisson and negative binomial models as special cases. The computational intractability is overcome by deriving the Weibull count model using a polynomial expansion which then allows for closed-form inference (integration term-by-term) when incorporating heterogeneity due to the conjugacy of the expansion and a commonly employed gamma distribution. In addition, we demonstrate that this new Weibull count model can (1) model both over- and underdispersed count data, (2) allow covariates to be introduced in a straightforward manner through the hazard function, and (3) be computed in standard software.

Suggested Citation

  • McShane, Blake & Adrian, Moshe & Bradlow, Eric T & Fader, Peter S, 2008. "Count Models Based on Weibull Interarrival Times," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 369-378.
  • Handle: RePEc:bes:jnlbes:v:26:y:2008:p:369-378
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/073500107000000278
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asamoah, Kwadwo, 2016. "On the credibility of insurance claim frequency: Generalized count models and parametric estimators," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 339-353.
    2. Gregori Baetschmann & Rainer Winkelmann, 2014. "A Dynamic Hurdle Model for Zero-Inflated Count Data: With an Application to Health Care Utilization," SOEPpapers on Multidisciplinary Panel Data Research 648, DIW Berlin, The German Socio-Economic Panel (SOEP).
    3. Gökgür, Burak & Karabatı, Selçuk, 2019. "Dynamic and targeted bundle pricing of two independently valued products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 184-198.
    4. Sáez-Castillo, A.J. & Conde-Sánchez, A., 2013. "A hyper-Poisson regression model for overdispersed and underdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 148-157.
    5. Sharifah Farah Syed Yusoff Alhabshi & Zamira Hasanah Zamzuri & Siti Norafidah Mohd Ramli, 2021. "Monte Carlo Simulation of the Moments of a Copula-Dependent Risk Process with Weibull Interwaiting Time," Risks, MDPI, vol. 9(6), pages 1-21, June.
    6. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    7. Patrice Cailleba & Herbert Casteran, 2010. "Do Ethical Values Work? A Quantitative Study of the Impact of Fair Trade Coffee on Consumer Behavior," Journal of Business Ethics, Springer, vol. 97(4), pages 613-624, December.
    8. Kevin Dayaratna & Jesse Crosson & Chandler Hubbard, 2022. "Closed Form Bayesian Inferences for Binary Logistic Regression with Applications to American Voter Turnout," Stats, MDPI, vol. 5(4), pages 1-21, November.
    9. Francisco Louzada & Juliana Cobre, 2012. "A multiple time scale survival model with a cure fraction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 355-368, June.
    10. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:26:y:2008:p:369-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.