IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i3p502-509.html
   My bibliography  Save this article

EM algorithm for one-shot device testing under the exponential distribution

Author

Listed:
  • Balakrishnan, N.
  • Ling, M.H.

Abstract

The EM algorithm is a powerful technique for determining the maximum likelihood estimates (MLEs) in the presence of binary data since the maximum likelihood estimators of the parameters cannot be expressed in a closed-form. In this paper, we consider one-shot devices that can be used only once and are destroyed after use, and so the actual observation is on the conditions rather than on the real lifetimes of the devices under test. Here, we develop the EM algorithm for such data under the exponential distribution for the lifetimes. Due to the advances in manufacturing design and technology, products have become highly reliable with long lifetimes. For this reason, accelerated life tests are performed to collect useful information on the parameters of the lifetime distribution. For such a test, the Bayesian approach with normal prior was proposed recently by Fan et al. (2009). Here, through a simulation study, we show that the EM algorithm and the mentioned Bayesian approach are both useful techniques for analyzing such binary data arising from one-shot device testing and then make a comparative study of their performance and show that, while the Bayesian approach is good for highly reliable products, the EM algorithm method is good for moderate and low reliability situations.

Suggested Citation

  • Balakrishnan, N. & Ling, M.H., 2012. "EM algorithm for one-shot device testing under the exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 502-509.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:3:p:502-509
    DOI: 10.1016/j.csda.2011.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100329X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    2. Ng, H. K. T. & Chan, P. S. & Balakrishnan, N., 2002. "Estimation of parameters from progressively censored data using EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 371-386, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishnan, N. & So, H.Y. & Ling, M.H., 2015. "EM algorithm for one-shot device testing with competing risks under exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 129-140.
    2. Deepak Prajapati & Man Ho Ling & Ping Shing Chan & Debasis Kundu, 2023. "Misspecification of copula for one-shot devices under constant stress accelerated life-tests," Journal of Risk and Reliability, , vol. 237(4), pages 725-740, August.
    3. Balakrishnan, N. & Ling, M.H., 2014. "Gamma lifetimes and one-shot device testing analysis," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 54-64.
    4. D. Logothetis & S. Malefaki & S. Trevezas & P.-H. Cournède, 2022. "Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 63-87, March.
    5. Yao Liu & Yashun Wang & Zhengwei Fan & Xun Chen & Chunhua Zhang & Yuanyuan Tan, 2020. "A new universal multi-stress acceleration model and multi-parameter estimation method based on particle swarm optimization," Journal of Risk and Reliability, , vol. 234(6), pages 764-778, December.
    6. Zhu, Xiaojun & Balakrishnan, N., 2022. "One-shot device test data analysis using non-parametric and semi-parametric inferential methods and applications," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. N. Balakrishnan & E. Castilla & N. Martín & L. Pardo, 2019. "Robust estimators for one-shot device testing data under gamma lifetime model with an application to a tumor toxicological data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 991-1019, November.
    8. Zhu, Xiaojun & Liu, Kai & He, Mu & Balakrishnan, N., 2021. "Reliability estimation for one-shot devices under cyclic accelerated life-testing," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balakrishnan, N. & So, H.Y. & Ling, M.H., 2015. "EM algorithm for one-shot device testing with competing risks under exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 129-140.
    2. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    3. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    4. Balakrishnan, N. & Saleh, H.M., 2011. "Relations for moments of progressively Type-II censored order statistics from half-logistic distribution with applications to inference," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2775-2792, October.
    5. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    6. Altındağ, Ömer & Aydoğdu, Halil, 2021. "Estimation of renewal function under progressively censored data and its applications," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Valiollahi, R. & Raqab, Mohammad Z. & Asgharzadeh, A. & Alqallaf, F.A., 2018. "Estimation and prediction for power Lindley distribution under progressively type II right censored samples," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 32-47.
    8. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    9. Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
    10. Basak, Prasanta & Basak, Indrani & Balakrishnan, N., 2009. "Estimation for the three-parameter lognormal distribution based on progressively censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3580-3592, August.
    11. Soumya Roy & Chiranjit Mukhopadhyay, 2015. "Maximum likelihood analysis of multi-stress accelerated life test data of series systems with competing log-normal causes of failure," Journal of Risk and Reliability, , vol. 229(2), pages 119-130, April.
    12. Manoj Rastogi & Yogesh Tripathi, 2013. "Inference on unknown parameters of a Burr distribution under hybrid censoring," Statistical Papers, Springer, vol. 54(3), pages 619-643, August.
    13. Shahsanaei Fatemeh & Rezaei Sadegh & Pak Abbas, 2012. "A New Two-Parameter Lifetime Distribution with Increasing Failure Rate," Stochastics and Quality Control, De Gruyter, vol. 27(1), pages 1-17, September.
    14. Park, Sangun & Ng, Hon Keung Tony, 2012. "Missing information and an optimal one-step plan in a Type II progressive censoring scheme," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 396-402.
    15. Tatjana Miljkovic & Nikita Barabanov, 2015. "Modeling veterans' health benefit grants using the expectation maximization algorithm," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1166-1182, June.
    16. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    17. Emura, Takeshi & Shiu, Shau-Kai, 2014. "Estimation and model selection for left-truncated and right-censored lifetime data with application to electric power transformers analysis," MPRA Paper 57528, University Library of Munich, Germany.
    18. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.
    19. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    20. Omar M. Bdair & Mohammad Z. Raqab, 2022. "Prediction of future censored lifetimes from mixture exponential distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 833-857, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:3:p:502-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.