IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v149y2018icp32-47.html
   My bibliography  Save this article

Estimation and prediction for power Lindley distribution under progressively type II right censored samples

Author

Listed:
  • Valiollahi, R.
  • Raqab, Mohammad Z.
  • Asgharzadeh, A.
  • Alqallaf, F.A.

Abstract

In survival, reliability and medical studies, it is natural to have experience with several situations pertaining to testing, cost or money constraints where the removal of units prior to failure is preplanned. In this context, we consider the inference problem including estimation and prediction for power Lindley distribution under the progressively type-II censored sample data. For the estimation purposes and other reliability characteristics maximum likelihood and Bayes approaches for estimating the model parameters are considered in this paper. Confidence intervals of the parameters and the corresponding average lengths and coverage probabilities are developed based on maximum likelihood and Bayes techniques. The Gibbs and Metropolis samplers are used to predict the life lengths of the removed units in multiple stages of the progressively censored sample. Monte Carlo simulations are performed to compare different methods and one real data set is analyzed for illustrative purposes.

Suggested Citation

  • Valiollahi, R. & Raqab, Mohammad Z. & Asgharzadeh, A. & Alqallaf, F.A., 2018. "Estimation and prediction for power Lindley distribution under progressively type II right censored samples," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 32-47.
  • Handle: RePEc:eee:matcom:v:149:y:2018:i:c:p:32-47
    DOI: 10.1016/j.matcom.2018.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418300259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasool Roozegar & Saralees Nadarajah, 2017. "On a Generalized Lindley Distribution," Statistica, Department of Statistics, University of Bologna, vol. 77(2), pages 149-157.
    2. Ghitany, M.E. & Al-Mutairi, D.K. & Balakrishnan, N. & Al-Enezi, L.J., 2013. "Power Lindley distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 20-33.
    3. Krishna, Hare & Kumar, Kapil, 2011. "Reliability estimation in Lindley distribution with progressively type II right censored sample," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 281-294.
    4. Gómez-Déniz, Emilio & Sordo, Miguel A. & Calderín-Ojeda, Enrique, 2014. "The Log–Lindley distribution as an alternative to the beta regression model with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 49-57.
    5. Jodrá, P., 2010. "Computer generation of random variables with Lindley or Poisson–Lindley distribution via the Lambert W function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 851-859.
    6. Ng, H. K. T. & Chan, P. S. & Balakrishnan, N., 2002. "Estimation of parameters from progressively censored data using EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 371-386, June.
    7. A. Asgharzadeh & S. Nadarajah & F. Sharafi, 2017. "Generalized inverse Lindley distribution with application to Danish fire insurance data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(10), pages 5001-5021, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    2. Saadati Nik, A. & Asgharzadeh, A. & Raqab, Mohammad Z., 2021. "Estimation and prediction for a new Pareto-type distribution under progressive type-II censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 508-530.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuancheng Si & Saralees Nadarajah, 2020. "Lindley Power Series Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 242-256, February.
    2. Subhradev Sen & Hazem Al-Mofleh & Sudhansu S. Maiti, 2021. "On Discrimination Between the Lindley and xgamma Distributions," Annals of Data Science, Springer, vol. 8(3), pages 559-575, September.
    3. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    4. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    5. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    6. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    7. Iman Makhdoom & Parviz Nasiri & Abbas Pak, 2016. "Bayesian approach for the reliability parameter of power Lindley distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 341-355, September.
    8. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    9. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    10. Friday Ikechukwu Agu & Joseph Thomas Eghwerido, 2021. "Agu-Eghwerido distribution, regression model and applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 59-76, December.
    11. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    12. Khaldoon Alhyasat & Ibrahim Kamarulzaman & Amer Ibrahim Al-Omari & Mohd Aftar Abu Bakar, 2020. "Power Size Biased Two-Parameter Akash Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 73-91, September.
    13. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    14. Balakrishnan, N. & Saleh, H.M., 2011. "Relations for moments of progressively Type-II censored order statistics from half-logistic distribution with applications to inference," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2775-2792, October.
    15. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    16. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    17. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    18. Ali Doostmoradi, 2018. "A New Distribution with two parameters to Lifetime Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 30-35, September.
    19. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    20. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:149:y:2018:i:c:p:32-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.