IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v30y1999i1p13-17.html
   My bibliography  Save this article

The lower bound method in probit regression

Author

Listed:
  • Bohning, Dankmar

Abstract

No abstract is available for this item.

Suggested Citation

  • Bohning, Dankmar, 1999. "The lower bound method in probit regression," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 13-17, March.
  • Handle: RePEc:eee:csdana:v:30:y:1999:i:1:p:13-17
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(98)00094-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
    2. Dankmar Böhning, 1992. "Multinomial logistic regression algorithm," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 197-200, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    2. Jonathan James, 2012. "A tractable estimator for general mixed multinomial logit models," Working Papers (Old Series) 1219, Federal Reserve Bank of Cleveland.
    3. Tian, Guo-Liang & Tang, Man-Lai & Fang, Hong-Bin & Tan, Ming, 2008. "Efficient methods for estimating constrained parameters with applications to regularized (lasso) logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3528-3542, March.
    4. Roussille, Nina & Scuderi, Benjamin, 2023. "Bidding for Talent: A Test of Conduct in a High-Wage Labor Market," IZA Discussion Papers 16352, Institute of Labor Economics (IZA).
    5. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    6. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    7. Liu, Wenchen & Tang, Yincai & Wu, Xianyi, 2020. "Separating variables to accelerate non-convex regularized optimization," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    8. Dalmau, Oscar & Alarcón, Teresa E. & González, Graciela, 2015. "Kernel multilogit algorithm for multiclass classification," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 199-206.
    9. Ambrogi, Federico & Biganzoli, Elia & Boracchi, Patrizia, 2009. "Estimating crude cumulative incidences through multinomial logit regression on discrete cause-specific hazards," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2767-2779, May.
    10. Takayuki Kawashima & Hironori Fujisawa, 2023. "Robust regression against heavy heterogeneous contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 421-442, May.
    11. Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
    12. Nicolas Depraetere & Martina Vandebroek, 2017. "A comparison of variational approximations for fast inference in mixed logit models," Computational Statistics, Springer, vol. 32(1), pages 93-125, March.
    13. repec:fip:fedcwp:12-19 is not listed on IDEAS
    14. Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
    15. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    16. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    17. Kenneth Lange & Hua Zhou, 2022. "A Legacy of EM Algorithms," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 52-66, December.
    18. Dankmar Böhning, 1992. "Multinomial logistic regression algorithm," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 197-200, March.
    19. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    20. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    21. Bissantz, Nicolai & Dümbgen, Lutz & Munk, Axel & Stratmann, Bernd, 2008. "Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces," Technical Reports 2008,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:30:y:1999:i:1:p:13-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.