IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i2p398-404.html
   My bibliography  Save this article

Regression Models for the Mean of the Quality-of-Life-Adjusted Restricted Survival Time Using Pseudo-Observations

Author

Listed:
  • Adin-Cristian Andrei
  • Susan Murray

Abstract

No abstract is available for this item.

Suggested Citation

  • Adin-Cristian Andrei & Susan Murray, 2007. "Regression Models for the Mean of the Quality-of-Life-Adjusted Restricted Survival Time Using Pseudo-Observations," Biometrics, The International Biometric Society, vol. 63(2), pages 398-404, June.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:2:p:398-404
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00723.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    2. Hongwei Zhao & Anastasios A. Tsiatis, 1999. "Efficient Estimation of the Distribution of Quality-Adjusted Survival Time," Biometrics, The International Biometric Society, vol. 55(4), pages 1101-1107, December.
    3. Susan Murray & Bernard Cole, 2000. "Variance and Sample Size Calculations in Quality-of-Life-Adjusted Survival Analysis (Q-TWiST)," Biometrics, The International Biometric Society, vol. 56(1), pages 173-182, March.
    4. Pei-Yun Chen & Anastasios A. Tsiatis, 2001. "Causal Inference on the Difference of the Restricted Mean Lifetime Between Two Groups," Biometrics, The International Biometric Society, vol. 57(4), pages 1030-1038, December.
    5. Hongwei Zhao & Anastasios A. Tsiatis, 2001. "Testing Equality of Survival Functions of Quality-Adjusted Lifetime," Biometrics, The International Biometric Society, vol. 57(3), pages 861-867, September.
    6. Adin-Cristian Andrei & Susan Murray, 2006. "Estimating the quality-of-life-adjusted gap time distribution of successive events subject to censoring," Biometrika, Biometrika Trust, vol. 93(2), pages 343-355, June.
    7. Mark J. Laan & Alan Hubbard, 1999. "Locally Efficient Estimation of the Quality-Adjusted Lifetime Distribution with Right-Censored Data and Covariates," Biometrics, The International Biometric Society, vol. 55(2), pages 530-536, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tunes-da-Silva, Gisela & Klein, John P., 2011. "Cutpoint selection for discretizing a continuous covariate for generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 226-235, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Zhang & Wei Li & Hui Zhang, 2020. "Efficient Estimation of Mann–Whitney-Type Effect Measures for Right-Censored Survival Outcomes in Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 246-262, July.
    2. Pai-Lien Chen & Pranab K. Sen, 2001. "Quality-Adjusted Survival Estimation with Periodic Observations," Biometrics, The International Biometric Society, vol. 57(3), pages 868-874, September.
    3. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    4. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    5. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    6. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    7. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    8. Dennis Dobler & Andrew Titman, 2020. "Dynamic inference for non‐Markov transition probabilities under random right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 572-586, June.
    9. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    10. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    11. Kaeding, Matthias, 2020. "Efficient Bayesian nonparametric hazard regression," Ruhr Economic Papers 850, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    12. Guibert, Quentin & Planchet, Frédéric, 2018. "Non-parametric inference of transition probabilities based on Aalen–Johansen integral estimators for acyclic multi-state models: application to LTC insurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 21-36.
    13. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    14. Martin Jacobsen & Torben Martinussen, 2016. "A Note on the Large Sample Properties of Estimators Based on Generalized Linear Models for Correlated Pseudo-observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 845-862, September.
    15. Shu Yang & Yilong Zhang & Guanghan Frank Liu & Qian Guan, 2023. "SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale," Biometrics, The International Biometric Society, vol. 79(1), pages 230-240, March.
    16. Hongwei Zhao & Anastasios A. Tsiatis, 2001. "Testing Equality of Survival Functions of Quality-Adjusted Lifetime," Biometrics, The International Biometric Society, vol. 57(3), pages 861-867, September.
    17. Min Zhang & Douglas E. Schaubel, 2012. "Double-Robust Semiparametric Estimator for Differences in Restricted Mean Lifetimes in Observational Studies," Biometrics, The International Biometric Society, vol. 68(4), pages 999-1009, December.
    18. Per Kragh Andersen & Eva Nina Sparre Wandall & Maja Pohar Perme, 2022. "Inference for transition probabilities in non-Markov multi-state models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 585-604, October.
    19. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    20. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:2:p:398-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.