IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v65y2003i4p343-351.html
   My bibliography  Save this article

A note on optimal designs for a two-part model

Author

Listed:
  • Han, Cong

Abstract

D- and DA-optimal designs are investigated for a model where the response is a mixture of zero and a lognormal random variable, and can be modelled using a logit model combined with a linear regression on the logarithm of the lognormal part. The DA-optimal design for estimating the logit model parameters is shown to coincide with the D-optimal design for the usual logit model. The DA-optimal design for estimating the linear model parameters is derived analytically. Among two-point designs, an analytic solution is given for the design that maximizes the D-optimality.

Suggested Citation

  • Han, Cong, 2003. "A note on optimal designs for a two-part model," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 343-351, December.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:4:p:343-351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00267-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krafft, Olaf & Schaefer, Martin, 1992. "D-Optimal designs for a multivariate regression model," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 130-140, July.
    2. Zhou Xiao-Hua & Wanzhu Tu, 1999. "Comparison of Several Independent Population Means When Their Samples Contain Log-Normal and Possibly Zero Observations," Biometrics, The International Biometric Society, vol. 55(2), pages 645-651, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idais, Osama, 2020. "Locally optimal designs for multivariate generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    2. Taylor Sandra & Pollard Katherine, 2009. "Hypothesis Tests for Point-Mass Mixture Data with Application to `Omics Data with Many Zero Values," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-45, February.
    3. Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.
    4. Meng Yuan & Chunlin Wang & Boxi Lin & Pengfei Li, 2022. "Semiparametric inference on general functionals of two semicontinuous populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 451-472, June.
    5. Bernhardt Paul W., 2018. "Maximum Likelihood Estimation in a Semicontinuous Survival Model with Covariates Subject to Detection Limits," The International Journal of Biostatistics, De Gruyter, vol. 14(2), pages 1-16, November.
    6. Yang, Yan & Simpson, Douglas, 2010. "Unified computational methods for regression analysis of zero-inflated and bound-inflated data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1525-1534, June.
    7. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2017. "Testing homogeneity for multiple nonnegative distributions with excess zero observations," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 146-157.
    8. Katarzyna Filipiak & Augustyn Markiewicz & Anna Szczepańska, 2009. "Optimal designs under a multivariate linear model with additional nuisance parameters," Statistical Papers, Springer, vol. 50(4), pages 761-778, August.
    9. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2018. "Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 182-197.
    10. Konrad Engel & Sylke Gierer, 1993. "Optimal designs for models with block-block resp. treatment-treatment correlations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 349-359, December.
    11. Zhale Tahmasebinejad, 2024. "Analysis of Two - Part Random Effects Model for Semi-Ordinal Longitudinal Response," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 777-808, November.
    12. Seyed Ehsan Saffari & John Carson Allen & Robiah Adnan & Seng Huat Ong & Shin Zhu Sim & William Greene, 2019. "Frequency of Visiting a Doctor: A right Truncated Count Regression Model with Excess Zeros," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 112-122, August.
    13. Yue, Rong-Xian & Liu, Xin & Chatterjee, Kashinath, 2014. "D-optimal designs for multiresponse linear models with a qualitative factor," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 57-69.
    14. Zhou, Xiao-Hua & Tu, Wanzhu, 2000. "Interval estimation for the ratio in means of log-normally distributed medical costs with zero values," Computational Statistics & Data Analysis, Elsevier, vol. 35(2), pages 201-210, December.
    15. Shou-En Lu & Yong Lin & Wei-Chung Joe Shih, 2004. "Analyzing Excessive No Changes in Clinical Trials with Clustered Data," Biometrics, The International Biometric Society, vol. 60(1), pages 257-267, March.
    16. Wolfgang Bischoff, 1995. "Determinant formulas with applications to designing when the observations are correlated," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 385-399, June.
    17. Zhou, Xiao-Hua & Liang, Hua, 2006. "Semi-parametric single-index two-part regression models," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1378-1390, March.
    18. Min-Hsiao Tsai & Ting Hsiang Lin, 2017. "Modeling data with a truncated and inflated Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 383-401, August.
    19. Imhof, Lorens, 2000. "Optimum Designs for a Multiresponse Regression Model," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 120-131, January.
    20. Xin Liu & Rong-Xian Yue, 2013. "A note on $$R$$ -optimal designs for multiresponse models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 483-493, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:4:p:343-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.