IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v72y2000i1p120-131.html
   My bibliography  Save this article

Optimum Designs for a Multiresponse Regression Model

Author

Listed:
  • Imhof, Lorens

Abstract

Exact n-point designs are given which are D-optimum for a simple multiresponse model, where the individual response variables can be represented by first-order and second-order models. The present results complement recent findings by Krafft and Schaefer, who obtained D-optimum n-point designs for several values of n. Furthermore, a conjecture on G-optimum n-point designs is given and the conjecture is proved for the simplest non-trivial case, that is, for n=4.

Suggested Citation

  • Imhof, Lorens, 2000. "Optimum Designs for a Multiresponse Regression Model," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 120-131, January.
  • Handle: RePEc:eee:jmvana:v:72:y:2000:i:1:p:120-131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91841-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soo, Yuh-Wen & Bates, Douglas M., 1996. "Multiresponse spline regression," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 619-631, October.
    2. Krafft, Olaf & Schaefer, Martin, 1992. "D-Optimal designs for a multivariate regression model," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 130-140, July.
    3. Wolfgang Bischoff, 1995. "Determinant formulas with applications to designing when the observations are correlated," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 385-399, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idais, Osama, 2020. "Locally optimal designs for multivariate generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    2. Kao, Ming-Hung & Khogeer, Hazar, 2021. "Optimal designs for mixed continuous and binary responses with quantitative and qualitative factors," Journal of Multivariate Analysis, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.
    2. Idais, Osama, 2020. "Locally optimal designs for multivariate generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    3. Katarzyna Filipiak & Augustyn Markiewicz & Anna SzczepaƄska, 2009. "Optimal designs under a multivariate linear model with additional nuisance parameters," Statistical Papers, Springer, vol. 50(4), pages 761-778, August.
    4. Konrad Engel & Sylke Gierer, 1993. "Optimal designs for models with block-block resp. treatment-treatment correlations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 349-359, December.
    5. Yue, Rong-Xian & Liu, Xin & Chatterjee, Kashinath, 2014. "D-optimal designs for multiresponse linear models with a qualitative factor," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 57-69.
    6. Han, Cong, 2003. "A note on optimal designs for a two-part model," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 343-351, December.
    7. Wolfgang Bischoff, 1995. "Determinant formulas with applications to designing when the observations are correlated," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 385-399, June.
    8. Xin Liu & Rong-Xian Yue, 2013. "A note on $$R$$ -optimal designs for multiresponse models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 483-493, May.
    9. Kao, Ming-Hung & Khogeer, Hazar, 2021. "Optimal designs for mixed continuous and binary responses with quantitative and qualitative factors," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    10. Yue, Rong-Xian, 2002. "Model-robust designs in multiresponse situations," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 369-379, July.
    11. Lin, Chun-Sui & Huang, Mong-Na Lo, 2010. "Optimal designs for estimating the control values in multi-univariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1055-1066, May.
    12. Bischoff, Wolfgang, 1996. "On maximin designs for correlated observations," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 357-363, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:72:y:2000:i:1:p:120-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.