IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i9p4305-4324.html
   My bibliography  Save this article

Robust designs for series estimation

Author

Listed:
  • Dette, Holger
  • Wiens, Douglas P.

Abstract

We discuss optimal design problems for a popular method of series estimation in regression problems. Commonly used design criteria are based on the generalized variance of the estimates of the coefficients in a truncated series expansion and do not take possible bias into account. We present a general perspective of constructing robust and efficient designs for series estimators which is based on the integrated mean squared error criterion. A minimax approach is used to derive designs which are robust with respect to deviations caused by the bias and the possibility of heteroscedasticity. A special case results from the imposition of an unbiasedness constraint; the resulting "unbiased designs" are particularly simple, and easily implemented. Our results are illustrated by constructing robust designs for series estimation with spherical harmonic descriptors, Zernike polynomials and Chebyshev polynomials.

Suggested Citation

  • Dette, Holger & Wiens, Douglas P., 2008. "Robust designs for series estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4305-4324, May.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:9:p:4305-4324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00065-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:9:p:4305-4324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.