IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v68y2006i1p3-25.html
   My bibliography  Save this article

Penalized spline models for functional principal component analysis

Author

Listed:
  • Fang Yao
  • Thomas C. M. Lee

Abstract

Summary. We propose an iterative estimation procedure for performing functional principal component analysis. The procedure aims at functional or longitudinal data where the repeated measurements from the same subject are correlated. An increasingly popular smoothing approach, penalized spline regression, is used to represent the mean function. This allows straightforward incorporation of covariates and simple implementation of approximate inference procedures for coefficients. For the handling of the within‐subject correlation, we develop an iterative procedure which reduces the dependence between the repeated measurements that are made for the same subject. The resulting data after iteration are theoretically shown to be asymptotically equivalent (in probability) to a set of independent data. This suggests that the general theory of penalized spline regression that has been developed for independent data can also be applied to functional data. The effectiveness of the proposed procedure is demonstrated via a simulation study and an application to yeast cell cycle gene expression data.

Suggested Citation

  • Fang Yao & Thomas C. M. Lee, 2006. "Penalized spline models for functional principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 3-25, February.
  • Handle: RePEc:bla:jorssb:v:68:y:2006:i:1:p:3-25
    DOI: 10.1111/j.1467-9868.2005.00530.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2005.00530.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2005.00530.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wyi:journl:002174 is not listed on IDEAS
    2. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    3. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    4. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    5. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    6. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
    7. Peter Hall & You‐Jun Yang, 2010. "Ordering and selecting components in multivariate or functional data linear prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 93-110, January.
    8. Emma O'Connor & Nick Fieller & Andrew Holmes & John C. Waterton & Edward Ainscow, 2010. "Functional principal component analyses of biomedical images as outcome measures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 57-76, January.
    9. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    10. Shiers, Nathaniel & Aston, John A.D. & Smith, Jim Q. & Coleman, John S., 2017. "Gaussian tree constraints applied to acoustic linguistic functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 199-215.
    11. Robert T. Krafty & Phyllis A. Gimotty & David Holtz & George Coukos & Wensheng Guo, 2008. "Varying Coefficient Model with Unknown Within-Subject Covariance for Analysis of Tumor Growth Curves," Biometrics, The International Biometric Society, vol. 64(4), pages 1023-1031, December.
    12. Kehui Chen & Pedro Delicado & Hans-Georg Müller, 2017. "Modelling function-valued stochastic processes, with applications to fertility dynamics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 177-196, January.
    13. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    14. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    15. Kehui Chen & Hans-Georg Müller, 2012. "Modeling Repeated Functional Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1599-1609, December.
    16. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    17. Ma, Haiqiang & Zhu, Zhongyi, 2016. "Continuously dynamic additive models for functional data," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 1-13.
    18. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Luo Xiao & Yingxing Li & David Ruppert, 2013. "Fast bivariate P-splines: the sandwich smoother," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 577-599, June.
    20. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:1:p:3-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.