IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3843-3851.html
   My bibliography  Save this article

A novel moment-based sufficient dimension reduction approach in multivariate regression

Author

Listed:
  • Yoo, Jae Keun

Abstract

Recently, a moment-based sufficient dimension reduction methodology in multivariate regression, focusing on the first two moments, was introduced. We present in this article a novel approach of the earlier method in roughly the same context. This novel method possesses several desirable properties that the earlier method did not have such as dimension tests with chi-squared distributions, predictor effects test without assuming any model, and so on. Simulated and real data examples are presented for studying various properties of the proposed method and for a numerical comparison to the earlier method.

Suggested Citation

  • Yoo, Jae Keun, 2008. "A novel moment-based sufficient dimension reduction approach in multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3843-3851, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3843-3851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00009-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jae Keun Yoo & R. Dennis Cook, 2007. "Optimal sufficient dimension reduction for the conditional mean in multivariate regression," Biometrika, Biometrika Trust, vol. 94(1), pages 231-242.
    2. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoo, Jae Keun, 2009. "Partial moment-based sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 450-456, February.
    2. Hilafu, Haileab & Yin, Xiangrong, 2013. "Sufficient dimension reduction in multivariate regressions with categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 139-147.
    3. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    4. Liu, Xuejing & Huo, Lei & Wen, Xuerong Meggie & Paige, Robert, 2017. "A link-free approach for testing common indices for three or more multi-index models," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 236-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoo, Jae Keun, 2008. "Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1825-1839, September.
    2. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    3. Yoo, Jae Keun, 2015. "A theoretical note on optimal sufficient dimension reduction with singularity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 109-113.
    4. Yoo, Jae Keun, 2009. "Partial moment-based sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 450-456, February.
    5. Wen, Xuerong Meggie, 2007. "A note on sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 817-821, April.
    6. Yoo, Jae Keun & Cook, R. Dennis, 2008. "Response dimension reduction for the conditional mean in multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 334-343, December.
    7. Heng-Hui Lue, 2010. "On principal Hessian directions for multivariate response regressions," Computational Statistics, Springer, vol. 25(4), pages 619-632, December.
    8. Adragni, Kofi Placid & Raim, Andrew M., 2014. "ldr: An R Software Package for Likelihood-Based Sufficient Dimension Reduction," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i03).
    9. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    10. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    12. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    13. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    14. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    15. Szretter Noste, María Eugenia, 2019. "Using DAGs to identify the sufficient dimension reduction in the Principal Fitted Components model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 317-320.
    16. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    17. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    18. Noorbaloochi, Siamak & Nelson, David, 2008. "Conditionally specified models and dimension reduction in the exponential families," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1574-1589, September.
    19. Li, Lexin, 2009. "Exploiting predictor domain information in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2665-2672, May.
    20. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3843-3851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.