IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3730-3748.html
   My bibliography  Save this article

A test for the two-sample problem based on empirical characteristic functions

Author

Listed:
  • Alba Fernández, V.
  • Jiménez Gamero, M.D.
  • Muñoz Garcia, J.

Abstract

A class of tests for the two sample problem that is based on the empirical characteristic function is investigated. They can be applied to continuous as well as to discrete data of any arbitrary fixed dimension. The tests are consistent against any fixed alternatives for adequate choices of the weight function involved in the definition of the test statistic. Both the bootstrap and the permutation procedures can be employed to estimate consistently the null distribution. The goodness of these approximations and the power of some tests in this class for finite sample sizes are investigated by simulation.

Suggested Citation

  • Alba Fernández, V. & Jiménez Gamero, M.D. & Muñoz Garcia, J., 2008. "A test for the two-sample problem based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3730-3748, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3730-3748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00484-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neuhaus, Georg, 1977. "Functional limit theorems for U-statistics in the degenerate case," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 424-439, September.
    2. Bajorunaite, Ruta & Klein, John P., 2007. "Two-sample tests of the equality of two cumulative incidence functions," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4269-4281, May.
    3. Baringhaus, L. & Franz, C., 2004. "On a new multivariate two-sample test," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 190-206, January.
    4. Zhang, Jin & Wu, Yuehua, 2007. "k-Sample tests based on the likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4682-4691, May.
    5. Luigi Salmaso & Aldo Solari, 2005. "Multiple aspect testing for case-control designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 62(2), pages 331-340, November.
    6. M. V. Alba & D. Barrera & M. D. Jiménez, 2001. "A homogeneity test based on empirical characteristic functions," Computational Statistics, Springer, vol. 16(2), pages 255-270, July.
    7. Fan, Yanqin, 1998. "Goodness-Of-Fit Tests Based On Kernel Density Estimators With Fixed Smoothing Parameters," Econometric Theory, Cambridge University Press, vol. 14(5), pages 604-621, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Li & Wenjuan Hu & Baoxue Zhang, 2023. "Measuring and testing homogeneity of distributions by characteristic distance," Statistical Papers, Springer, vol. 64(2), pages 529-556, April.
    2. Pablo Martínez-Camblor, 2010. "Comparing k-independent and right censored samples based on the likelihood ratio," Computational Statistics, Springer, vol. 25(3), pages 363-374, September.
    3. Martínez-Camblor, Pablo & de Uña-Álvarez, Jacobo, 2009. "Non-parametric k-sample tests: Density functions vs distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3344-3357, July.
    4. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    5. Meintanis, Simos G. & Ushakov, Nikolai G., 2016. "Nonparametric probability weighted empirical characteristic function and applications," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 52-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Alba Fernández & D. Barrera Rosillo & M. Ibáñez Pérez & M. Jiménez Gamero, 2009. "A homogeneity test for bivariate random variables," Computational Statistics, Springer, vol. 24(3), pages 513-531, August.
    2. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    3. Martínez-Camblor, Pablo & de Uña-Álvarez, Jacobo, 2009. "Non-parametric k-sample tests: Density functions vs distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3344-3357, July.
    4. Quessy, Jean-François & Éthier, François, 2012. "Cramér–von Mises and characteristic function tests for the two and k-sample problems with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2097-2111.
    5. D. Dobler & J. Beyersmann & M. Pauly, 2017. "Non-strange weird resampling for complex survival data," Biometrika, Biometrika Trust, vol. 104(3), pages 699-711.
    6. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    7. Scaillet, Olivier, 2007. "Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 533-543, March.
    8. Otávio Bartalotti, 2013. "Theory and Practice of Inference in Regression Discontinuity: A Fixed-Bandwidth Asymptotics Approach," Working Papers 1302, Tulane University, Department of Economics, revised Nov 2013.
    9. Masato Okamoto, 2009. "Decomposition of gini and multivariate gini indices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 153-177, June.
    10. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    11. Nestoras Karathanasis & Ioannis Tsamardinos & Vincenzo Lagani, 2016. "omicsNPC: Applying the Non-Parametric Combination Methodology to the Integrative Analysis of Heterogeneous Omics Data," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-23, November.
    12. L. Corain & L. Salmaso, 2007. "A Non-parametric Method for Defining a Global Preference Ranking of Industrial Products," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(2), pages 203-216.
    13. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    14. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    15. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    16. Pavia, Jose M., 2015. "Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(c01).
    17. George Kapetanios & Tony Yates, 2014. "Evolving UK and US macroeconomic dynamics through the lens of a model of deterministic structural change," Empirical Economics, Springer, vol. 47(1), pages 305-345, August.
    18. Modarres, Reza, 2014. "On the interpoint distances of Bernoulli vectors," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 215-222.
    19. Wang, Hong & Zhang, Xu, 2016. "Confidence Band for the Differences between Two Direct Adjusted Survival Curves," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(c02).
    20. Holzmann, Hajo & Koch, Susanne & Min, Aleksey, 2004. "Almost sure limit theorems for U-statistics," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 261-269, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3730-3748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.