IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v7y1977i3p424-439.html
   My bibliography  Save this article

Functional limit theorems for U-statistics in the degenerate case

Author

Listed:
  • Neuhaus, Georg

Abstract

[9] established multidimensional functional limit theorems for generalized U-statistics for estimable parameters which are stationary of order zero (the nondegenerate case). Similar univariate and bivariate functional limit theorems are derived for U-statistics in the degenerate case. The latter are close connected with one- or two-sample Cramér-von Mises statistics.

Suggested Citation

  • Neuhaus, Georg, 1977. "Functional limit theorems for U-statistics in the degenerate case," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 424-439, September.
  • Handle: RePEc:eee:jmvana:v:7:y:1977:i:3:p:424-439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(77)90083-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Li & Wenjuan Hu & Baoxue Zhang, 2023. "Measuring and testing homogeneity of distributions by characteristic distance," Statistical Papers, Springer, vol. 64(2), pages 529-556, April.
    2. Alba Fernández, V. & Jiménez Gamero, M.D. & Muñoz Garcia, J., 2008. "A test for the two-sample problem based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3730-3748, March.
    3. Holzmann, Hajo & Koch, Susanne & Min, Aleksey, 2004. "Almost sure limit theorems for U-statistics," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 261-269, September.
    4. M. Ahmad, 2014. "A $$U$$ -statistic approach for a high-dimensional two-sample mean testing problem under non-normality and Behrens–Fisher setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 33-61, February.
    5. Cabus, Patricia & Guillotin-Plantard, Nadine, 2002. "Functional limit theorems for U-statistics indexed by a random walk," Stochastic Processes and their Applications, Elsevier, vol. 101(1), pages 143-160, September.
    6. Marie Hušková & Simos Meintanis, 2008. "Tests for the multivariate -sample problem based on the empirical characteristic function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 263-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:7:y:1977:i:3:p:424-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.