IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v49y2005i4p1205-1227.html
   My bibliography  Save this article

Relevance measures for subset variable selection in regression problems based on k-additive mutual information

Author

Listed:
  • Kojadinovic, Ivan

Abstract

No abstract is available for this item.

Suggested Citation

  • Kojadinovic, Ivan, 2005. "Relevance measures for subset variable selection in regression problems based on k-additive mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1205-1227, June.
  • Handle: RePEc:eee:csdana:v:49:y:2005:i:4:p:1205-1227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00243-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Grabisch & Jean-Luc Marichal & Marc Roubens, 2000. "Equivalent Representations of Set Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 157-178, May.
    2. Weigend, A. S. & Bonnlander, B. V., 1994. "Selecting Input Variables Using Mutual Information and Nonparemetric Density Estimation," SFB 373 Discussion Papers 1994,49, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Darbellay, Georges A., 1999. "An estimator of the mutual information based on a criterion for conditional independence," Computational Statistics & Data Analysis, Elsevier, vol. 32(1), pages 1-17, November.
    4. Harry Joe, 1989. "Estimation of entropy and other functionals of a multivariate density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(4), pages 683-697, December.
    5. Peter Hall & Sally Morton, 1993. "On the estimation of entropy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(1), pages 69-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashis K. Gangopadhyay & Robert disario & Dipak K. Dey, 1997. "A nonparametric approach to k-sample inference based on entropy-super-," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 237-252, September.
    2. Jan G. De Gooijer & Ao Yuan, 2008. "MDL Mean Function Selection in Semiparametric Kernel Regression Models," Tinbergen Institute Discussion Papers 08-046/4, Tinbergen Institute.
    3. Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
    4. Kojadinovic, Ivan, 2004. "Agglomerative hierarchical clustering of continuous variables based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 269-294, June.
    5. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    6. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    7. Beknazaryan, Aleksandr & Dang, Xin & Sang, Hailin, 2019. "On mutual information estimation for mixed-pair random variables," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 9-16.
    8. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    9. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
    10. Ulrich Faigle & Michel Grabisch, 2019. "Least Square Approximations and Linear Values of Cooperative Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381231, HAL.
    11. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    12. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    13. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    14. Ulrich Faigle & Michel Grabisch, 2016. "Bases and linear transforms of TU-games and cooperation systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 875-892, November.
    15. Billot, Antoine & Thisse, Jacques-Francois, 2005. "How to share when context matters: The Mobius value as a generalized solution for cooperative games," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 1007-1029, December.
    16. Kojadinovic, Ivan, 2004. "Estimation of the weights of interacting criteria from the set of profiles by means of information-theoretic functionals," European Journal of Operational Research, Elsevier, vol. 155(3), pages 741-751, June.
    17. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    18. Fabien Lange & László Kóczy, 2013. "Power indices expressed in terms of minimal winning coalitions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 281-292, July.
    19. Michel Grabisch & Christophe Labreuche, 2016. "A note on the Sobol' indices and interactive criteria," Documents de travail du Centre d'Economie de la Sorbonne 16003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:49:y:2005:i:4:p:1205-1227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.