IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01169281.html
   My bibliography  Save this paper

Least Square Approximations and Conic Values of Cooperative Games

Author

Listed:
  • Ulrich Faigle

    (Universität zu Köln = University of Cologne)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

The problem of least square approximation for set functions by set functions satisfying specified linear equality or inequality constraints is considered. The problem has important applications in the field of pseudo-Boolean functions, decision making and in cooperative game theory, where approximation by additive set functions yields so-called least square values. In fact, it is seem that every linear value for cooperative games arises from least square approximation. We provide a general approach and problem overview. In particular, we derive explicit formulas for solutions under mild constraints, which include and extend previous results in the literature.

Suggested Citation

  • Ulrich Faigle & Michel Grabisch, 2015. "Least Square Approximations and Conic Values of Cooperative Games," Post-Print halshs-01169281, HAL.
  • Handle: RePEc:hal:journl:halshs-01169281
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01169281
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01169281/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luis Ruiz & Federico Valenciano & José Zarzuelo, 1998. "Some new results on least square values for TU games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 139-158, June.
    2. Marichal, Jean-Luc & Mathonet, Pierre, 2011. "Weighted Banzhaf power and interaction indexes through weighted approximations of games," European Journal of Operational Research, Elsevier, vol. 211(2), pages 352-358, June.
    3. Michel Grabisch & Jean-Luc Marichal & Marc Roubens, 2000. "Equivalent Representations of Set Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 157-178, May.
    4. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    5. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    6. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Faigle & Michel Grabisch, 2019. "Least Square Approximations and Linear Values of Cooperative Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381231, HAL.
    2. Ulrich Faigle & Michel Grabisch, 2014. "Bases and Linear Transforms of Cooperation Systems," Documents de travail du Centre d'Economie de la Sorbonne 14010r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised May 2015.
    3. Ulrich Faigle & Michel Grabisch, 2014. "Linear Transforms, Values and Least Square Approximation for Cooperation Systems," Documents de travail du Centre d'Economie de la Sorbonne 14010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    5. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    6. Michel Grabisch & Éric Raufaste, 2008. "An empirical study of statistical properties of Choquet and Sugeno integrals," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445168, HAL.
    7. Yehuda Izhakian, 2012. "Ambiguity Measurement," Working Papers 12-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    8. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445132, HAL.
    9. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    10. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    11. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    12. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    13. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    14. Mustapha Ridaoui & Michel Grabisch, 2016. "Choquet integral calculus on a continuous support and its applications," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(1), pages 73-93.
    15. repec:hal:pseose:hal-01373325 is not listed on IDEAS
    16. Michel Grabisch & Christophe Labreuche, 2002. "The symmetric and asymmetric Choquet integrals on finite spaces for decision making," Statistical Papers, Springer, vol. 43(1), pages 37-52, January.
    17. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2011. "A representation of preferences by the Choquet integral with respect to a 2-additive capacity," Theory and Decision, Springer, vol. 71(3), pages 297-324, September.
    18. Borkotokey, Surajit & Kumar, Rajnish & Sarangi, Sudipta, 2015. "A solution concept for network games: The role of multilateral interactions," European Journal of Operational Research, Elsevier, vol. 243(3), pages 912-920.
    19. Christophe Labreuche, 2018. "An axiomatization of the Choquet integral in the context of multiple criteria decision making without any commensurability assumption," Annals of Operations Research, Springer, vol. 271(2), pages 701-735, December.
    20. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    21. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.

    More about this item

    Keywords

    least square approximation; cooperative game; pseudo-Boolean function; least square value; Shapley value; probabilistic value; approximation par les moindres carrés; jeu coopératif; fonction pseudo-booléenne; valeur aux moindre carrés; valeur de Shapley; valeur probabiliste;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01169281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.