IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v36y2001i4p441-459.html
   My bibliography  Save this article

Cluster analysis: a further approach based on density estimation

Author

Listed:
  • Cuevas, Antonio
  • Febrero, Manuel
  • Fraiman, Ricardo

Abstract

No abstract is available for this item.

Suggested Citation

  • Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2001. "Cluster analysis: a further approach based on density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 441-459, June.
  • Handle: RePEc:eee:csdana:v:36:y:2001:i:4:p:441-459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(00)00052-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
    2. Hardy, Andre, 1996. "On the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 83-96, November.
    3. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    4. Penrose, M. D., 1995. "Single Linkage Clustering and Continuum Percolation," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 94-109, April.
    5. Ilya S. Molchanov, 1998. "A Limit Theorem for Solutions of Inequalities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 235-242, March.
    6. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Jin & Yulin He & Defa Huang, 2021. "An Improved Variable Kernel Density Estimator Based on L 2 Regularization," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    2. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    3. Giovanna Menardi, 2016. "A Review on Modal Clustering," International Statistical Review, International Statistical Institute, vol. 84(3), pages 413-433, December.
    4. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    5. Dabo-Niang, Sophie & Ferraty, Frederic & Vieu, Philippe, 2007. "On the using of modal curves for radar waveforms classification," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4878-4890, June.
    6. Lasse Holmström & Kyösti Karttunen & Jussi Klemelä, 2017. "Estimation of level set trees using adaptive partitions," Computational Statistics, Springer, vol. 32(3), pages 1139-1163, September.
    7. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    8. Manuel Febrero & Pedro Galeano & Wenceslao González-Manteiga, 2007. "A functional analysis of NOx levels: location and scale estimation and outlier detection," Computational Statistics, Springer, vol. 22(3), pages 411-427, September.
    9. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    10. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    11. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    12. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    5. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    6. Linton, Oliver, 2002. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," Journal of Econometrics, Elsevier, vol. 106(2), pages 325-368, February.
    7. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    8. Qihua Wang & Tao Zhang & Wolfgang Karl Härdle, 2016. "An Extended Single-index Model with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1140-1152, December.
    9. Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
    10. Véronique Flambard & Pierre Lasserre & Pierre Mohnen, 2007. "Snow removal auctions in Montreal: costs, informational rents, and procurement management," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(1), pages 245-277, February.
    11. Kyungchul Song, 2009. "Two-Step Extremum Estimation with Estimated Single-Indices," PIER Working Paper Archive 09-012, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    13. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    14. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    15. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
    16. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
    17. repec:hum:wpaper:sfb649dp2014-003 is not listed on IDEAS
    18. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    19. repec:hum:wpaper:sfb649dp2009-028 is not listed on IDEAS
    20. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    21. Bontemps, Christophe & Simioni, Michel & Surry, Yves R., 2005. "Hedonic Housing Prices and Agricultural Pollution: An Empirical Investigation on Semiparametric Models," 2005 Annual meeting, July 24-27, Providence, RI 19547, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    22. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers 04/01, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:36:y:2001:i:4:p:441-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.