Interaction screening via canonical correlation
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-022-01206-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wenliang Pan & Xueqin Wang & Weinan Xiao & Hongtu Zhu, 2019. "A Generic Sure Independence Screening Procedure," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 928-937, April.
- Jun Lu & Lu Lin, 2020. "Model-free conditional screening via conditional distance correlation," Statistical Papers, Springer, vol. 61(1), pages 225-244, February.
- Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
- Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
- Ning Hao & Hao Helen Zhang, 2014. "Interaction Screening for Ultrahigh-Dimensional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1285-1301, September.
- Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Hall, Peter & Xue, Jing-Hao, 2014. "On selecting interacting features from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 694-708.
- Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
- Shan Luo & Zehua Chen, 2020. "Feature Selection by Canonical Correlation Search in High-Dimensional Multiresponse Models With Complex Group Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1227-1235, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ping Wang & Lu Lin, 2023. "Conditional characteristic feature screening for massive imbalanced data," Statistical Papers, Springer, vol. 64(3), pages 807-834, June.
- Shuaishuai Chen & Jun Lu, 2023. "Quantile-Composited Feature Screening for Ultrahigh-Dimensional Data," Mathematics, MDPI, vol. 11(10), pages 1-21, May.
- Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Randall Reese & Guifang Fu & Geran Zhao & Xiaotian Dai & Xiaotian Li & Kenneth Chiu, 2022. "Epistasis Detection via the Joint Cumulant," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 514-532, December.
- Xuewei Cheng & Gang Li & Hong Wang, 2024. "The concordance filter: an adaptive model-free feature screening procedure," Computational Statistics, Springer, vol. 39(5), pages 2413-2436, July.
- Qiu, Debin & Ahn, Jeongyoun, 2020. "Grouped variable screening for ultra-high dimensional data for linear model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
- Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
- Xiong, Wei & Chen, Yaxian & Ma, Shuangge, 2023. "Unified model-free interaction screening via CV-entropy filter," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
- Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
- Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
- Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
- Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
- Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Liu, Jingyuan & Sun, Ao & Ke, Yuan, 2024. "A generalized knockoff procedure for FDR control in structural change detection," Journal of Econometrics, Elsevier, vol. 239(2).
- Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
More about this item
Keywords
Screening; Interaction; Multi-response; Canonical correlation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01206-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.