IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v196y2024ics0167947324000434.html
   My bibliography  Save this article

Sufficient dimension reduction for a novel class of zero-inflated graphical models

Author

Listed:
  • Koplin, Eric
  • Forzani, Liliana
  • Tomassi, Diego
  • Pfeiffer, Ruth M.

Abstract

Graphical models allow modeling of complex dependencies among components of a random vector. In many applications of graphical models, however, for example microbiome data, the data have an excess number of zero values. New pairwise graphical models with distributions in an exponential family are presented, that accommodate excess numbers of zeros in the random vector components. First these multivariate distributions are characterized in terms of univariate conditional distributions. Then predictors that arise from such a pairwise graphical model with excess zeros are modeled as functions of an outcome, and the corresponding first order sufficient dimension reduction (SDR) is derived. That is, linear combinations of the predictors that contain all the information for the regression of the outcome as a function of the predictors are obtained. To incorporate variable selection, the SDR is estimated using a pseudo-likelihood with a hierarchical penalty that prioritizes sparse interactions only for variables associated with the outcome. These methods yield consistent estimators of the reduction and can be applied to continuous or categorical outcomes. The new methods are then illustrated by studying normal, Poisson and truncated Poisson graphical models with excess zeros in simulations and by analyzing microbiome data from the American Gut Project. The models provided robust variable selection and the predictive performance of the Poisson zero-inflated pairwise graphical model was equal or better than that of other available methods for the analysis of microbiome data.

Suggested Citation

  • Koplin, Eric & Forzani, Liliana & Tomassi, Diego & Pfeiffer, Ruth M., 2024. "Sufficient dimension reduction for a novel class of zero-inflated graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000434
    DOI: 10.1016/j.csda.2024.107959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000434
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    2. Efstathia Bura & Sabrina Duarte & Liliana Forzani, 2016. "Sufficient Reductions in Regressions With Exponential Family Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1313-1329, July.
    3. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    3. Junhong Lin & Lorenzo Rosasco & Silvia Villa & Ding-Xuan Zhou, 2018. "Modified Fejér sequences and applications," Computational Optimization and Applications, Springer, vol. 71(1), pages 95-113, September.
    4. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    5. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    6. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    7. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    8. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Szretter Noste, María Eugenia, 2019. "Using DAGs to identify the sufficient dimension reduction in the Principal Fitted Components model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 317-320.
    10. Hedy Attouch & Alexandre Cabot & Zaki Chbani & Hassan Riahi, 2018. "Inertial Forward–Backward Algorithms with Perturbations: Application to Tikhonov Regularization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 1-36, October.
    11. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
    13. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2020. "A Novel Forward-Backward Algorithm for Solving Convex Minimization Problem in Hilbert Spaces," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    14. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    15. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Li, Lianwei & Li, Wendy & Zou, Quan & Ma, Zhanshan (Sam), 2020. "Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds," Ecological Modelling, Elsevier, vol. 431(C).
    17. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    18. Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    20. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.