IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p2985-d1485701.html
   My bibliography  Save this article

Projection-Uniform Subsampling Methods for Big Data

Author

Listed:
  • Yuxin Sun

    (Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Wenjun Liu

    (Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Ye Tian

    (Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract

The idea of experimental design has been widely used in subsampling algorithms to extract a small portion of big data that carries useful information for statistical modeling. Most existing subsampling algorithms of this kind are model-based and designed to achieve the corresponding optimality criteria for the model. However, data generating models are frequently unknown or complicated. Model-free subsampling algorithms are needed for obtaining samples that are robust under model misspecification and complication. This paper introduces two novel algorithms, called the Projection-Uniform Subsampling algorithm and its extension. Both algorithms aim to extract a subset of samples from big data that are space-filling in low-dimensional projections. We show that subdata obtained from our algorithms perform superiorly under the uniform projection criterion and centered L 2 -discrepancy. Comparisons among our algorithms, model-based and model-free methods are conducted through two simulation studies and two real-world case studies. We demonstrate the robustness of our proposed algorithms in building statistical models in scenarios involving model misspecification and complication.

Suggested Citation

  • Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2985-:d:1485701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/2985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/2985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
    2. Min Ren & Sheng-Li Zhao, 2023. "Subdata selection based on orthogonal array for big data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(15), pages 5483-5501, August.
    3. V. Roshan Joseph & Evren Gul & Shan Ba, 2015. "Maximum projection designs for computer experiments," Biometrika, Biometrika Trust, vol. 102(2), pages 371-380.
    4. Cheng-Yu Sun & Boxin Tang, 2023. "Uniform Projection Designs and Strong Orthogonal Arrays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 417-423, January.
    5. HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
    6. Qian Xiao & Hongquan Xu, 2017. "Construction of maximin distance Latin squares and related Latin hypercube designs," Biometrika, Biometrika Trust, vol. 104(2), pages 455-464.
    7. Ye Tian & Hongquan Xu, 2022. "A minimum aberration-type criterion for selecting space-filling designs [Optimal sliced Latin hypercube designs]," Biometrika, Biometrika Trust, vol. 109(2), pages 489-501.
    8. Yuanzhen He & Boxin Tang, 2013. "Strong orthogonal arrays and associated Latin hypercubes for computer experiments," Biometrika, Biometrika Trust, vol. 100(1), pages 254-260.
    9. Jun Yu & HaiYing Wang & Mingyao Ai & Huiming Zhang, 2022. "Optimal Distributed Subsampling for Maximum Quasi-Likelihood Estimators With Massive Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 265-276, January.
    10. Yaqiong Yao & HaiYing Wang, 2019. "Optimal subsampling for softmax regression," Statistical Papers, Springer, vol. 60(2), pages 585-599, April.
    11. HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    3. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
    4. J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen, 2022. "Inversion-free subsampling Newton’s method for large sample logistic regression," Statistical Papers, Springer, vol. 63(3), pages 943-963, June.
    5. Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
    6. Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
    7. Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    8. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
    9. Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
    10. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    11. Jun Yu & Jiaqi Liu & HaiYing Wang, 2023. "Information-based optimal subdata selection for non-linear models," Statistical Papers, Springer, vol. 64(4), pages 1069-1093, August.
    12. Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
    13. Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Hector, Emily C. & Luo, Lan & Song, Peter X.-K., 2023. "Parallel-and-stream accelerator for computationally fast supervised learning," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    15. Sokbae Lee & Serena Ng, 2020. "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 45-80, August.
    16. Lee, JooChul & Wang, HaiYing & Schifano, Elizabeth D., 2020. "Online updating method to correct for measurement error in big data streams," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    17. Grömping, Ulrike, 2023. "A unifying implementation of stratum (aka strong) orthogonal arrays," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    18. Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
    19. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    20. Laura Deldossi & Elena Pesce & Chiara Tommasi, 2023. "Accounting for outliers in optimal subsampling methods," Statistical Papers, Springer, vol. 64(4), pages 1119-1135, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2985-:d:1485701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.