Online updating method to correct for measurement error in big data streams
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2020.106976
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hua Liang & Sally W. Thurston & David Ruppert & Tatiyana Apanasovich & Russ Hauser, 2008. "Additive partial linear models with measurement errors," Biometrika, Biometrika Trust, vol. 95(3), pages 667-678.
- HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
- Ariel Kleiner & Ameet Talwalkar & Purnamrita Sarkar & Michael I. Jordan, 2014. "A scalable bootstrap for massive data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 795-816, September.
- Xinyu Zhang & Haiying Wang & Yanyuan Ma & Raymond J. Carroll, 2017. "Linear Model Selection When Covariates Contain Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1553-1561, October.
- HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
- Qifan Song & Faming Liang, 2015. "A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 947-972, November.
- Yishu Xue & HaiYing Wang & Jun Yan & Elizabeth D. Schifano, 2020. "An online updating approach for testing the proportional hazards assumption with streams of survival data," Biometrics, The International Biometric Society, vol. 76(1), pages 171-182, March.
- Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, JooChul & Schifano, Elizabeth D. & Wang, HaiYing, 2024. "Fast Optimal Subsampling Probability Approximation for Generalized Linear Models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 224-237.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
- Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
- Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
- Lee, JooChul & Schifano, Elizabeth D. & Wang, HaiYing, 2024. "Fast Optimal Subsampling Probability Approximation for Generalized Linear Models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 224-237.
- Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Jun Yu & Jiaqi Liu & HaiYing Wang, 2023. "Information-based optimal subdata selection for non-linear models," Statistical Papers, Springer, vol. 64(4), pages 1069-1093, August.
- Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
- Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
- Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
- J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen, 2022. "Inversion-free subsampling Newton’s method for large sample logistic regression," Statistical Papers, Springer, vol. 63(3), pages 943-963, June.
- Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
- Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Hector, Emily C. & Luo, Lan & Song, Peter X.-K., 2023. "Parallel-and-stream accelerator for computationally fast supervised learning," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
- Sokbae Lee & Serena Ng, 2020.
"An Econometric Perspective on Algorithmic Subsampling,"
Annual Review of Economics, Annual Reviews, vol. 12(1), pages 45-80, August.
- Sokbae Lee & Serena Ng, 2019. "An Econometric Perspective on Algorithmic Subsampling," Papers 1907.01954, arXiv.org, revised Apr 2020.
- Sokbae (Simon) Lee & Serena Ng, 2020. "An econometric perspective on algorithmic subsampling," CeMMAP working papers CWP18/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Fang, Jianglin, 2023. "A split-and-conquer variable selection approach for high-dimensional general semiparametric models with massive data," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
More about this item
Keywords
Data compression; Errors-in-variables; Linear regression; Streaming data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:149:y:2020:i:c:s0167947320300670. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.