IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i4d10.1007_s00180-020-00974-4.html
   My bibliography  Save this article

A partitioned quasi-likelihood for distributed statistical inference

Author

Listed:
  • Guangbao Guo

    (Shandong University of Technology)

  • Yue Sun

    (Shandong University of Technology)

  • Xuejun Jiang

    (Southern University of Science and Technology)

Abstract

In the big data setting, working data sets are often distributed on multiple machines. However, classical statistical methods are often developed to solve the problems of single estimation or inference. We employ a novel parallel quasi-likelihood method in generalized linear models, to make the variances between different sub-estimators relatively similar. Estimates are obtained from projection subsets of data and later combined by suitably-chosen unknown weights. We also show the proposed method to produce better asymptotic efficiency than using the simple average. Furthermore, simulation examples show that the proposed method can significantly improve statistical inference.

Suggested Citation

  • Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00974-4
    DOI: 10.1007/s00180-020-00974-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00974-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00974-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srijan Sengupta & Stanislav Volgushev & Xiaofeng Shao, 2016. "A Subsampled Double Bootstrap for Massive Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1222-1232, July.
    2. Tien-Chung Hu & Hen-Chao Chang, 1999. "Stability for randomly weighted sums of random elements," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 22, pages 1-10, January.
    3. Ariel Kleiner & Ameet Talwalkar & Purnamrita Sarkar & Michael I. Jordan, 2014. "A scalable bootstrap for massive data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 795-816, September.
    4. Dany Pascal Moualeu-Ngangue & Susanna Röblitz & Rainald Ehrig & Peter Deuflhard, 2015. "Parameter Identification in a Tuberculosis Model for Cameroon," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
    5. Qifan Song & Faming Liang, 2015. "A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 947-972, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris N Politis, 2024. "Scalable subsampling: computation, aggregation and inference," Biometrika, Biometrika Trust, vol. 111(1), pages 347-354.
    2. Lee, JooChul & Wang, HaiYing & Schifano, Elizabeth D., 2020. "Online updating method to correct for measurement error in big data streams," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    3. Fang, Jianglin, 2023. "A split-and-conquer variable selection approach for high-dimensional general semiparametric models with massive data," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    4. Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
    5. Ma, Xuejun & Wang, Shaochen & Zhou, Wang, 2021. "Testing multivariate quantile by empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    6. Jaeger, Adam & Lazar, Nicole A., 2020. "Split sample empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    7. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-54, February.
    8. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    9. Dean Eckles & Maurits Kaptein, 2019. "Bootstrap Thompson Sampling and Sequential Decision Problems in the Behavioral Sciences," SAGE Open, , vol. 9(2), pages 21582440198, June.
    10. Badruddoza, Syed & Amin, Modhurima & McCluskey, Jill, 2019. "Assessing the Importance of an Attribute in a Demand SystemStructural Model versus Machine Learning," Working Papers 2019-5, School of Economic Sciences, Washington State University.
    11. Olhede, Sofia C. & Wolfe, Patrick J., 2018. "The future of statistics and data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 46-50.
    12. Shi, Chengchun & Lu, Wenbin & Song, Rui, 2018. "A massive data framework for M-estimators with cubic-rate," LSE Research Online Documents on Economics 102111, London School of Economics and Political Science, LSE Library.
    13. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    14. Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
    15. Batuhan Özkan & Coşkun Parim & Erhan Çene, 2023. "Predicting Countries’ Development Levels Using the Decision Tree and Random Forest Methods," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 87-104, June.
    16. Mercè Crosas & Gary King & James Honaker & Latanya Sweeney, 2015. "Automating Open Science for Big Data," The ANNALS of the American Academy of Political and Social Science, , vol. 659(1), pages 260-273, May.
    17. Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
    18. Villoria, Nelson B. & Liu, Jing, 2018. "Using spatially explicit data to improve our understanding of land supply responses: An application to the cropland effects of global sustainable irrigation in the Americas," Land Use Policy, Elsevier, vol. 75(C), pages 411-419.
    19. Vaughan, Gregory, 2020. "Efficient big data model selection with applications to fraud detection," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1116-1127.
    20. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:4:d:10.1007_s00180-020-00974-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.