IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v139y2019icp117-133.html
   My bibliography  Save this article

A distribution-free test of independence based on mean variance index

Author

Listed:
  • Cui, Hengjian
  • Zhong, Wei

Abstract

A new test based on mean variance (MV) index is proposed for testing the independence between a categorical random variable Y and a continuous one X. The MV index can be considered as the weighted average of Cramér–von Mises distances between the conditional distribution functions of X given each class of Y and the unconditional distribution function of X. The MV index is zero if and only if X and Y are independent. The new MV test between X and Y enjoys several appealing merits. First, an explicit form of the asymptotic null distribution is derived under the independence between X and Y. It provides an efficient way to compute critical values and p-value. Second, no assumption on the distributions of two random variables is required and the new test statistic is invariant under one-to-one transformations of the continuous random variable. It is essentially a rank test and distribution-free, so it is resistant to heavy-tailed distributions and extreme values in practice. Monte Carlo simulations demonstrate its excellent finite-sample performance. In applications, the MV test is used in two high dimensional gene expression data to detect the significant genes associated with tumor types.

Suggested Citation

  • Cui, Hengjian & Zhong, Wei, 2019. "A distribution-free test of independence based on mean variance index," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 117-133.
  • Handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:117-133
    DOI: 10.1016/j.csda.2019.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731930115X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
    2. Ruth Heller & Yair Heller & Malka Gorfine, 2013. "A consistent multivariate test of association based on ranks of distances," Biometrika, Biometrika Trust, vol. 100(2), pages 503-510.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Dang & Dao Nguyen & Yixin Chen & Junying Zhang, 2021. "A new Gini correlation between quantitative and qualitative variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1314-1343, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L Weihs & M Drton & N Meinshausen, 2018. "Symmetric rank covariances: a generalized framework for nonparametric measures of dependence," Biometrika, Biometrika Trust, vol. 105(3), pages 547-562.
    2. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    3. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    4. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    5. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    6. Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
    7. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    8. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
    9. Yang, Baoying & Yin, Xiangrong & Zhang, Nan, 2019. "Sufficient variable selection using independence measures for continuous response," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 480-493.
    10. Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    12. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    13. Yan, Xiaodong & Tang, Niansheng & Xie, Jinhan & Ding, Xianwen & Wang, Zhiqiang, 2018. "Fused mean–variance filter for feature screening," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 18-32.
    14. Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
    15. Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
    16. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
    17. Alexander S. Long & Brian J. Reich & Ana‐Maria Staicu & John Meitzen, 2023. "A nonparametric test of group distributional differences for hierarchically clustered functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3778-3791, December.
    18. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
    19. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    20. Ping Wang & Lu Lin, 2023. "Conditional characteristic feature screening for massive imbalanced data," Statistical Papers, Springer, vol. 64(3), pages 807-834, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:117-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.