IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v26y2020i3d10.1007_s10985-019-09482-0.html
   My bibliography  Save this article

Semiparametric methods for survival data with measurement error under additive hazards cure rate models

Author

Listed:
  • Sandip Barui

    (University of Waterloo)

  • Grace Y. Yi

    (University of Waterloo)

Abstract

It is well established that measurement error has drastically negative impact on data analysis. It can not only bias parameter estimates but may also cause loss of power for testing relationship between variables. Although survival analysis of error-contaminated data has attracted extensive interest, relatively little attention has been paid to dealing with survival data with error-contaminated covariates when the underlying population is characterized by a cured fraction. In this paper, we consider this problem for which lifetimes of the non-cured individuals are featured by the additive hazards model and the measurement error process is described by an additive model. Unlike estimating the relative risk in the proportional hazards model, the additive hazards model allows us to estimate the absolute risk difference associated with the covariates. To allow the model flexibility, we incorporate time-dependent covariates in the model. We develop estimation methods for the two scenarios, without or with measurement error. The proposed methods are evaluated from both the theoretical view point and the numerical perspectives. Furthermore, a real-life data application is presented to illustrate the utility of the methodology.

Suggested Citation

  • Sandip Barui & Grace Y. Yi, 2020. "Semiparametric methods for survival data with measurement error under additive hazards cure rate models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 421-450, July.
  • Handle: RePEc:spr:lifeda:v:26:y:2020:i:3:d:10.1007_s10985-019-09482-0
    DOI: 10.1007/s10985-019-09482-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-019-09482-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-019-09482-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu, 2004. "On semiparametric transformation cure models," Biometrika, Biometrika Trust, vol. 91(2), pages 331-343, June.
    2. Yi Li & Louise Ryan, 2004. "Survival Analysis With Heterogeneous Covariate Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 724-735, January.
    3. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    4. Luis E. Nieto‐Barajas & Guosheng Yin, 2008. "Bayesian Semiparametric Cure Rate Model with an Unknown Threshold," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 540-556, September.
    5. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    6. Sun, Liuquan & Zhou, Xian, 2008. "Inference in the additive risk model with time-varying covariates subject to measurement errors," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2559-2566, November.
    7. Mengling Liu & Wenbin Lu & Yongzhao Shao, 2006. "Interval Mapping of Quantitative Trait Loci for Time-to-Event Data with the Proportional Hazards Mixture Cure Model," Biometrics, The International Biometric Society, vol. 62(4), pages 1053-1061, December.
    8. Ying Yan & Grace Y. Yi, 2016. "A Class of Functional Methods for Error-Contaminated Survival Data Under Additive Hazards Models with Replicate Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 684-695, April.
    9. Laurence S. Freedman & Vitaly Fainberg & Victor Kipnis & Douglas Midthune & Raymond J. Carroll, 2004. "A New Method for Dealing with Measurement Error in Explanatory Variables of Regression Models," Biometrics, The International Biometric Society, vol. 60(1), pages 172-181, March.
    10. Liuquan Sun & Zhigang Zhang & Jianguo Sun, 2006. "Additive hazards regression of failure time data with covariate measurement errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(4), pages 497-509, November.
    11. Li Y. & Lin X., 2003. "Functional Inference in Frailty Measurement Error Models for Clustered Survival Data Using the SIMEX Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 191-203, January.
    12. Hong‐Bin Fang & Gang Li & Jianguo Sun, 2005. "Maximum Likelihood Estimation in a Semiparametric Logistic/Proportional‐Hazards Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 59-75, March.
    13. Ma, Yanyuan & Yin, Guosheng, 2008. "Cure Rate Model With Mismeasured Covariates Under Transformation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 743-756, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    2. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    3. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    4. Frederico Machado Almeida & Enrico Antônio Colosimo & Vinícius Diniz Mayrink, 2021. "Firth adjusted score function for monotone likelihood in the mixture cure fraction model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 131-155, January.
    5. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    6. Yingwei Peng & Jeremy M. G. Taylor, 2017. "Residual-based model diagnosis methods for mixture cure models," Biometrics, The International Biometric Society, vol. 73(2), pages 495-505, June.
    7. Motahareh Parsa & Ingrid Van Keilegom, 2023. "Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?," Statistical Papers, Springer, vol. 64(3), pages 835-855, June.
    8. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    9. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    11. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    12. Mengling Liu & Wenbin Lu & Yongzhao Shao, 2006. "Interval Mapping of Quantitative Trait Loci for Time-to-Event Data with the Proportional Hazards Mixture Cure Model," Biometrics, The International Biometric Society, vol. 62(4), pages 1053-1061, December.
    13. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    14. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    15. Ying Yan & Grace Y. Yi, 2016. "Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 321-342, July.
    16. Tomoyuki Sugimoto & Toshimitsu Hamasaki, 2006. "Properties of estimators of baseline hazard functions in a semiparametric cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 647-674, December.
    17. Yanlin Tang & Xinyuan Song & Grace Yun Yi, 2022. "Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 139-168, January.
    18. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    19. Wang, Antai & Zhang, Yilong & Shao, Yongzhao, 2017. "On the likelihood of mixture cure models," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 51-55.
    20. Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:26:y:2020:i:3:d:10.1007_s10985-019-09482-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.