IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v68y2014icp65-71.html
   My bibliography  Save this article

Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells

Author

Listed:
  • Wang, Jing
  • Liu, Shenquan
  • Liu, Xuanliang

Abstract

This paper aims to discuss our research into synchronized transitions in two reciprocally gap-junction coupled bursting pancreatic β-cells. Numerical results revealed that propagations of synchronous states could be induced not only by changing the coupling strength, but also by varying the slow time constant. Firstly, these asynchronous and synchronous states such as out-of-phase, almost in-phase and in-phase synchronization were specifically demonstrated by phase portraits and time evolutions. By comparing interspike intervals (ISI) bifurcation diagrams of two coupled neurons with an individual neuron, we found that coupling strength played a critical role in tonic-to-bursting transitions. In particular, with the phase difference and ISI-distance being introduced, regions of various synchronous and asynchronous states were plotted in a two-dimensional parameter space. More interestingly, it was found that the coupled neurons could always realize complete synchronization as long as the coupling strength was appropriate.

Suggested Citation

  • Wang, Jing & Liu, Shenquan & Liu, Xuanliang, 2014. "Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 65-71.
  • Handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:65-71
    DOI: 10.1016/j.chaos.2014.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haixia & Wang, Qingyun & Lu, Qishao, 2011. "Bursting oscillations, bifurcation and synchronization in neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 667-675.
    2. Mario Galarreta & Shaul Hestrin, 1999. "A network of fast-spiking cells in the neocortex connected by electrical synapses," Nature, Nature, vol. 402(6757), pages 72-75, November.
    3. Wang, Qingyun & Lu, Qishao & Chen, GuanRong & feng, Zhaosheng & Duan, LiXia, 2009. "Bifurcation and synchronization of synaptically coupled FHN models with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 918-925.
    4. Wang, Jiang & Guo, Xinmeng & Yu, Haitao & Liu, Chen & Deng, Bin & Wei, Xile & Chen, Yingyuan, 2014. "Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 40-48.
    5. Liu, Chen & Wang, Jiang & Wang, Lin & Yu, Haitao & Deng, Bin & Wei, Xile & Tsang, Kaiming & Chan, Wailok, 2014. "Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 1-12.
    6. Wang, Qing Yun & Lu, Qi Shao & Guan Rong Chen,, 2007. "Ordered bursting synchronization and complex wave propagation in a ring neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 869-878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Yubing & Xie, Yanhang & Lin, Xiu & Hao, Yinghang & Ma, Xiaoguang, 2010. "Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 96-103.
    2. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    3. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    4. Parastesh, Fatemeh & Azarnoush, Hamed & Jafari, Sajad & Hatef, Boshra & Perc, Matjaž & Repnik, Robert, 2019. "Synchronizability of two neurons with switching in the coupling," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 217-223.
    5. Soriano-Sánchez, A.G. & Posadas-Castillo, C., 2018. "Smart pattern to generate small–world networks," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 415-422.
    6. Wang, Qingyun & Duan, Zhisheng & Feng, Zhaosheng & Chen, Guanrong & Lu, Qishao, 2008. "Synchronization transition in gap-junction-coupled leech neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4404-4410.
    7. Liu, Chen & Wang, Jiang & Wang, Lin & Yu, Haitao & Deng, Bin & Wei, Xile & Tsang, Kaiming & Chan, Wailok, 2014. "Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 1-12.
    8. Zhang, Qunjiao, 2014. "Robust synchronization of FitzHugh–Nagumo network with parameter disturbances by sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 22-26.
    9. Li, Jiajia & Zhang, Xuan & Du, Mengmeng & Wu, Ying, 2022. "Switching behavior of the gamma power in the neuronal network modulated by the astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Song, Jian & Liu, Shenquan & Wen, Qixiang, 2022. "Geometric analysis of the spontaneous electrical activity in anterior pituitary corticotrophs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    12. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Yilmaz, Ergin, 2014. "Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 1-8.
    14. Gong, Yubing & Wang, Li & Xu, Bo, 2012. "Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 548-553.
    15. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.
    17. Li, Jiajia & Wang, Rong & Du, Mengmeng & Tang, Jun & Wu, Ying, 2016. "Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 702-708.
    18. Xie, Tianting & Ji, Yuandong & Yang, Zhongshan & Duan, Fabing & Abbott, Derek, 2023. "Optimal added noise for minimizing distortion in quantizer-array linear estimation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Upadhyay, Ranjit Kumar & Mondal, Argha, 2017. "Synchronization of bursting neurons with a slowly varying d. c. current," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 195-208.
    20. Zheng, Yan Hong & Lu, Qi Shao, 2008. "Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3719-3728.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:65-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.