IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007690.html
   My bibliography  Save this article

Frequency switching leads to distinctive fast–slow behaviors in Duffing system

Author

Listed:
  • Zhao, Jiahao
  • Sun, Hanyu
  • Zhang, Xiaofang
  • Han, Xiujing
  • Han, Meng
  • Bi, Qinsheng

Abstract

The slowly forced Duffing system has been found to exhibit unique fast–slow behaviors in descending frequency switching scheme, the typical of which is the sliding bursting, which is instructive for understanding the dynamics of ubiquitous frequency switching systems in scientific research and practical engineering. This paper is devoted to further refining the fast–slow dynamics of the slowly forced Duffing system with another commonly encountered frequency switching scheme, i.e., the ascending frequency switching, characterized by switching the frequency synchronously according to the increase or decrease of state variable values. Taking the forcing amplitude as an example, this paper provides a theoretical way to fully summarize the fast–slow behaviors in frequency switching systems with the variation of parameter values based on the proposed superposition analysis of one- and two-parameter bifurcations of subsystems. As a result, two typical bifurcation structures and eight threshold windows with distinct switching vector fields therein are identified, inducing up to ten different bursting patterns. Among them, several novel fast–slow dynamics, such as multiple jumps hysteresis loop formed by boundary equilibrium bifurcations and the switching failure phenomena, are presented and investigated. In particular, the underlying mechanism of threshold modulation, i.e., the evolution of unconventional bifurcations, is also found. These findings contribute to complementing and contrasting the existing studies on the fast–slow dynamics of frequency switching systems.

Suggested Citation

  • Zhao, Jiahao & Sun, Hanyu & Zhang, Xiaofang & Han, Xiujing & Han, Meng & Bi, Qinsheng, 2024. "Frequency switching leads to distinctive fast–slow behaviors in Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007690
    DOI: 10.1016/j.chaos.2024.115217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haixia & Wang, Qingyun & Lu, Qishao, 2011. "Bursting oscillations, bifurcation and synchronization in neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 667-675.
    2. Han, Xiujing & Bi, Qinsheng, 2023. "Sliding fast–slow dynamics in the slowly forced Duffing system with frequency switching," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Song, Jin & Han, Xiujing & Zou, Yong & Jiang, Yandan & Bi, Qinsheng, 2022. "Relaxation oscillation patterns induced by amplitude-modulated excitation in the Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Zhao, Jiahao & Han, Xiujing, 2023. "Sliding bursting oscillations related to transcritical bifurcation delay in an excited vector field with frequency switching," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    5. Zhang, Guoqi & Wu, Zhiqiang, 2019. "Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 342-353.
    6. Xiao, Junyan & Chen, Zhangyao & Bi, Qinsheng & Zou, Yong & Guan, Shuguang, 2021. "Distinctive roles of hysteresis, amplitude death and oscillation death in generating fast-slow phenomena in parametrically and externally excited systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Bezziou, Mohamed & Jebril, Iqbal & Dahmani, Zoubir, 2021. "A new nonlinear duffing system with sequential fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Bao, B.C. & Wu, P.Y. & Bao, H. & Xu, Q. & Chen, M., 2018. "Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 161-170.
    9. Ma, Xindong & Xia, Daixian & Jiang, Wenan & Liu, Mao & Bi, Qinsheng, 2021. "Compound bursting behaviors in a forced Mathieu-van der Pol-Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Jian & Liu, Shenquan & Wen, Qixiang, 2022. "Geometric analysis of the spontaneous electrical activity in anterior pituitary corticotrophs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Wei, Mengke & Han, Xiujing, 2024. "Fast–slow dynamics related to sharp transition behaviors in the Rayleigh oscillator with two slow square wave excitations," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.
    4. Zhang, Xiaofang & Li, Hongqing & Jiang, Wenan & Chen, Liqun & Bi, Qinsheng, 2022. "Exploiting multiple-frequency bursting of a shape memory oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    7. Wang, Jing & Liu, Shenquan & Liu, Xuanliang, 2014. "Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 65-71.
    8. Kenmogne, Fabien & Wokwenmendam, Martine Limi & Simo, Hervé & Adile, Adoum Danao & Noah, Pierre Marcel Anicet & Barka, Mahamat & Nguiya, Sévérin, 2022. "Effects of damping on the dynamics of an electromechanical system consisting of mechanical network of discontinuous coupled system oscillators with irrational nonlinearities: Application to sand sieve," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Amira Abdelnebi & Zoubir Dahmani, 2022. "New Van der Pol–Duffing Jerk Fractional Differential Oscillator of Sequential Type," Mathematics, MDPI, vol. 10(19), pages 1-16, September.
    10. Wang, Mengjiao & Liao, Xiaohan & Deng, Yong & Li, Zhijun & Su, Yongxin & Zeng, Yicheng, 2020. "Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Xu, Huijun & Li, Shaolong & Xue, Miao & Zhang, Zhengdi, 2024. "Sliding bursting dynamics and bifurcation mechanisms in a nonsmooth coupled Duffing and van der Pol system with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    12. Zhao, Heqi & Ma, Xindong & Yang, Weijie & Zhang, Zhao & Bi, Qinsheng, 2023. "The mechanism of periodic and chaotic bursting patterns in an externally excited memcapacitive system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Bao, B.C. & Wu, P.Y. & Bao, H. & Wu, H.G. & Zhang, X. & Chen, M., 2018. "Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 146-153.
    14. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    15. Xu, Quan & Tan, Xiao & Zhu, Dong & Bao, Han & Hu, Yihua & Bao, Bocheng, 2020. "Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Song, Jin & Han, Xiujing, 2024. "Effects of modulation phase on relaxation oscillations in the Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Upadhyay, Ranjit Kumar & Mondal, Argha, 2017. "Synchronization of bursting neurons with a slowly varying d. c. current," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 195-208.
    18. Francisco Beltran-Carbajal & Juan Eduardo Esquivel-Cruz & Hugo Yañez-Badillo & Ivan de Jesus Rivas-Cambero & David Sotelo & Carlos Sotelo, 2023. "Multiple-Frequency Force Estimation of Controlled Vibrating Systems with Generalized Nonlinear Stiffness," Mathematics, MDPI, vol. 11(13), pages 1-29, June.
    19. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Ma, Ping, 2020. "Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    20. Alvaro H. Salas & Ma’mon Abu Hammad & Badriah M. Alotaibi & Lamiaa S. El-Sherif & Samir A. El-Tantawy, 2022. "Closed-Form Solutions to a Forced Damped Rotational Pendulum Oscillator," Mathematics, MDPI, vol. 10(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.