IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007690.html
   My bibliography  Save this article

Frequency switching leads to distinctive fast–slow behaviors in Duffing system

Author

Listed:
  • Zhao, Jiahao
  • Sun, Hanyu
  • Zhang, Xiaofang
  • Han, Xiujing
  • Han, Meng
  • Bi, Qinsheng

Abstract

The slowly forced Duffing system has been found to exhibit unique fast–slow behaviors in descending frequency switching scheme, the typical of which is the sliding bursting, which is instructive for understanding the dynamics of ubiquitous frequency switching systems in scientific research and practical engineering. This paper is devoted to further refining the fast–slow dynamics of the slowly forced Duffing system with another commonly encountered frequency switching scheme, i.e., the ascending frequency switching, characterized by switching the frequency synchronously according to the increase or decrease of state variable values. Taking the forcing amplitude as an example, this paper provides a theoretical way to fully summarize the fast–slow behaviors in frequency switching systems with the variation of parameter values based on the proposed superposition analysis of one- and two-parameter bifurcations of subsystems. As a result, two typical bifurcation structures and eight threshold windows with distinct switching vector fields therein are identified, inducing up to ten different bursting patterns. Among them, several novel fast–slow dynamics, such as multiple jumps hysteresis loop formed by boundary equilibrium bifurcations and the switching failure phenomena, are presented and investigated. In particular, the underlying mechanism of threshold modulation, i.e., the evolution of unconventional bifurcations, is also found. These findings contribute to complementing and contrasting the existing studies on the fast–slow dynamics of frequency switching systems.

Suggested Citation

  • Zhao, Jiahao & Sun, Hanyu & Zhang, Xiaofang & Han, Xiujing & Han, Meng & Bi, Qinsheng, 2024. "Frequency switching leads to distinctive fast–slow behaviors in Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007690
    DOI: 10.1016/j.chaos.2024.115217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.