IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i16p4404-4410.html
   My bibliography  Save this article

Synchronization transition in gap-junction-coupled leech neurons

Author

Listed:
  • Wang, Qingyun
  • Duan, Zhisheng
  • Feng, Zhaosheng
  • Chen, Guanrong
  • Lu, Qishao

Abstract

Real neurons can exhibit various types of firings including tonic spiking, bursting as well as silent state, which are frequently observed in neuronal electrophysiological experiments. More interestingly, it is found that neurons can demonstrate the co-existing mode of stable tonic spiking and bursting, which depends on initial conditions. In this paper, synchronization in gap-junction-coupled neurons with co-existing attractors of spiking and bursting firings is investigated as the coupling strength gets increased. Synchronization transitions can be identified by means of the bifurcation diagram and the correlation coefficient. It is illustrated that the coupled neurons can exhibit different types of synchronization transitions between spiking and bursting when the coupling strength increases. In the course of synchronization transitions, an intermittent synchronization can be observed. These results may be instructive to understand synchronization transitions in neuronal systems.

Suggested Citation

  • Wang, Qingyun & Duan, Zhisheng & Feng, Zhaosheng & Chen, Guanrong & Lu, Qishao, 2008. "Synchronization transition in gap-junction-coupled leech neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4404-4410.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:16:p:4404-4410
    DOI: 10.1016/j.physa.2008.02.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108002434
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.02.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qing Yun & Lu, Qi Shao & Guan Rong Chen,, 2007. "Ordered bursting synchronization and complex wave propagation in a ring neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 869-878.
    2. Toral, Raúl & Masoller, C & Mirasso, Claudio R & Ciszak, M & Calvo, O, 2003. "Characterization of the anticipated synchronization regime in the coupled FitzHugh–Nagumo model for neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 192-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    2. Gong, Yubing & Xie, Yanhang & Lin, Xiu & Hao, Yinghang & Ma, Xiaoguang, 2010. "Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 96-103.
    3. Wang, Jing & Liu, Shenquan & Liu, Xuanliang, 2014. "Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 65-71.
    4. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    5. Parastesh, Fatemeh & Azarnoush, Hamed & Jafari, Sajad & Hatef, Boshra & Perc, Matjaž & Repnik, Robert, 2019. "Synchronizability of two neurons with switching in the coupling," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 217-223.
    6. Auriel Washburn & Rachel W Kallen & Maurice Lamb & Nigel Stepp & Kevin Shockley & Michael J Richardson, 2019. "Feedback delays can enhance anticipatory synchronization in human-machine interaction," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
    7. Zheng, Yan Hong & Lu, Qi Shao, 2008. "Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3719-3728.
    8. Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
    9. Iran R Roman & Auriel Washburn & Edward W Large & Chris Chafe & Takako Fujioka, 2019. "Delayed feedback embedded in perception-action coordination cycles results in anticipation behavior during synchronized rhythmic action: A dynamical systems approach," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-32, October.
    10. Stephen, Damian G. & Dixon, James A., 2011. "Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 160-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:16:p:4404-4410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.