IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6757d10.1038_47029.html
   My bibliography  Save this article

A network of fast-spiking cells in the neocortex connected by electrical synapses

Author

Listed:
  • Mario Galarreta

    (University of Tennessee, Memphis)

  • Shaul Hestrin

    (University of Tennessee, Memphis)

Abstract

Encoding of information in the cortex is thought to depend on synchronous firing of cortical neurons1,2. Inhibitory neurons are known to be critical in the coordination of cortical activity3,4,5, but how interaction among inhibitory cells promotes synchrony is not well understood4,6,7,8,9,10,11,12. To address this issue directly, we have recorded simultaneously from pairs of fast-spiking (FS) cells, a type of γ-aminobutyric acid (GABA)-containing neocortical interneuron13. Here we report a high occurrence of electrical coupling among FS cells. Electrical synapses were not found among pyramidal neurons or between FS cells and other cortical cells. Some FS cells were interconnected by both electrical and GABAergic synapses. We show that communication through electrical synapses allows excitatory signalling among inhibitory cells and promotes their synchronous spiking. These results indicate that electrical synapses establish a network of fast-spiking cells in the neocortex which may play a key role in coordinating cortical activity.

Suggested Citation

  • Mario Galarreta & Shaul Hestrin, 1999. "A network of fast-spiking cells in the neocortex connected by electrical synapses," Nature, Nature, vol. 402(6757), pages 72-75, November.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6757:d:10.1038_47029
    DOI: 10.1038/47029
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/47029
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/47029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cofré, Rodrigo & Cessac, Bruno, 2013. "Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 13-31.
    2. Liu, Chen & Wang, Jiang & Wang, Lin & Yu, Haitao & Deng, Bin & Wei, Xile & Tsang, Kaiming & Chan, Wailok, 2014. "Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 1-12.
    3. Yilmaz, Ergin, 2014. "Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 1-8.
    4. Wang, Jing & Liu, Shenquan & Liu, Xuanliang, 2014. "Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 65-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6757:d:10.1038_47029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.