IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v115y2015icp24-36.html
   My bibliography  Save this article

Controlling chaos in a food chain model

Author

Listed:
  • Singh, Anuraj
  • Gakkhar, Sunita

Abstract

In this paper, different mechanisms are used to suppress the chaos in a food chain model. The control is applied to the chaotic system so as the controlled system admits a stable attractor which may be an equilibrium point or a limit cycle. The bounded feedback is used to achieve the stabilization of unstable fixed point of the uncontrolled chaotic system. Delayed feedback control is used to control the chaos to periodic orbits. Numerical results substantiate the analytical findings.

Suggested Citation

  • Singh, Anuraj & Gakkhar, Sunita, 2015. "Controlling chaos in a food chain model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 115(C), pages 24-36.
  • Handle: RePEc:eee:matcom:v:115:y:2015:i:c:p:24-36
    DOI: 10.1016/j.matcom.2015.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415000646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Upadhyay, Ranjit Kumar & Naji, Raid Kamel, 2009. "Dynamics of a three species food chain model with Crowley–Martin type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1337-1346.
    2. Lv, Songjuan & Zhao, Min, 2008. "The dynamic complexity of a three species food chain model," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1469-1480.
    3. Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
    4. Hui, Jing & Chen, Lansun, 2006. "Dynamic complexities in a periodically pulsed ratio-dependent predator–prey ecosystem modeled on a chemostat," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 407-416.
    5. Naji, Raid Kamel & Balasim, Alla Tariq, 2007. "Dynamical behavior of a three species food chain model with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1853-1866.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Wang & Hui Chang & Yuxia Li, 2020. "Dynamics Analysis and Chaotic Control of a Fractional-Order Three-Species Food-Chain System," Mathematics, MDPI, vol. 8(3), pages 1-15, March.
    2. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    3. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar & Sahu, Govind Prasad, 2021. "Chaos control of chaotic plankton dynamics in the presence of additional food, seasonality, and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Prants, Fabiola G. & Rech, Paulo C., 2017. "Complex dynamics of a three-dimensional continuous-time autonomous system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 132-139.
    5. García, P., 2022. "A machine learning based control of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Changjin Xu & Peiluan Li & Maoxin Liao & Zixin Liu & Qimei Xiao & Shuai Yuan, 2019. "Control Scheme for a Fractional-Order Chaotic Genesio-Tesi Model," Complexity, Hindawi, vol. 2019, pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
    2. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    3. Gupta, R.P. & Yadav, Dinesh K., 2023. "Nonlinear dynamics of a stage-structured interacting population model with honest signals and cues," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    5. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Ali, Emad & Asif, Mohammed & Ajbar, AbdelHamid, 2013. "Study of chaotic behavior in predator–prey interactions in a chemostat," Ecological Modelling, Elsevier, vol. 259(C), pages 10-15.
    7. Meng, Xin-You & Huo, Hai-Feng & Xiang, Hong & Yin, Qi-yu, 2014. "Stability in a predator–prey model with Crowley–Martin function and stage structure for prey," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 810-819.
    8. Nitu Kumari & Nishith Mohan, 2019. "Cross Diffusion Induced Turing Patterns in a Tritrophic Food Chain Model with Crowley-Martin Functional Response," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
    9. Xue, Lin, 2012. "Pattern formation in a predator–prey model with spatial effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5987-5996.
    10. Zhao, Jiantao & Wei, Junjie, 2009. "Stability and bifurcation in a two harmful phytoplankton–zooplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1395-1409.
    11. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    12. Drubi, Fátima & Ibáñez, Santiago & Pilarczyk, Paweł, 2021. "Nilpotent singularities and chaos: Tritrophic food chains," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Cai, Liming & Li, Xuezhi & Yu, Jingyuan & Zhu, Guangtian, 2009. "Dynamics of a nonautonomous predator–prey dispersion–delay system with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2064-2075.
    14. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    15. Yujing Yang & Wenzhe Tang, 2018. "Research on a 3D Predator-Prey Evolutionary System in Real Estate Market," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    16. Zhao, Min & Wang, Xitao & Yu, Hengguo & Zhu, Jun, 2012. "Dynamics of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1432-1444.
    17. Yu, Hengguo & Zhong, Shouming & Ye, Mao, 2009. "Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 619-632.
    18. Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Florencia Carusela, M. & Momo, Fernando R. & Romanelli, Lilia, 2009. "Competition, predation and coexistence in a three trophic system," Ecological Modelling, Elsevier, vol. 220(19), pages 2349-2352.
    20. Wu, Yuhang & Ni, Mingkang, 2024. "Complex dynamics in a singularly perturbed Hastings–Powell model with the additive Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:115:y:2015:i:c:p:24-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.