IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2526-2532.html
   My bibliography  Save this article

An improved harmony search algorithm for synchronization of discrete-time chaotic systems

Author

Listed:
  • Santos Coelho, Leandro dos
  • de Andrade Bernert, Diego Luis

Abstract

The harmony search (HS) algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. HS was conceptualized using an analogy with music improvisation process where music players improvise the pitches of their instruments to obtain better harmony. The HS algorithm does not require initial values and uses a random search instead of a gradient search, so derivative information is unnecessary. Furthermore, the HS algorithm is simple in concept, few in parameters, easy in implementation, imposes fewer mathematical requirements, and does not require initial value settings of the decision variables. In recent years, the investigation of synchronization and control problem for discrete chaotic systems has attracted much attention, and many possible applications. The tuning of a proportional–integral–derivative (PID) controller based on an improved HS (IHS) algorithm for synchronization of two identical discrete chaotic systems subject the different initial conditions is investigated in this paper. Simulation results of the IHS to determine the PID parameters to synchronization of two Hénon chaotic systems are compared with other HS approaches including classical HS and global-best HS. Numerical results reveal that the proposed IHS method is a powerful search and controller design optimization tool for synchronization of chaotic systems.

Suggested Citation

  • Santos Coelho, Leandro dos & de Andrade Bernert, Diego Luis, 2009. "An improved harmony search algorithm for synchronization of discrete-time chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2526-2532.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2526-2532
    DOI: 10.1016/j.chaos.2008.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2006. "Chaos synchronization between two different chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 549-554.
    2. Jia, Qiang, 2008. "Chaos control and synchronization of the Newton–Leipnik chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 814-824.
    3. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Huang, De-Xian & Tang, Fang, 2007. "Control and synchronization of chaotic systems by differential evolution algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 412-419.
    4. Hung, Meei-Ling & Lin, Jui-Sheng & Yan, Jun-Juh & Liao, Teh-Lu, 2008. "Optimal PID control design for synchronization of delayed discrete chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 781-785.
    5. Aguilar-López, Ricardo & Martinez-Guerra, Rafael, 2007. "Partial synchronization of different chaotic oscillators using robust PID feedback," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 572-581.
    6. Sun, Huijing & Cao, Hongjun, 2008. "Chaos control and synchronization of a modified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1442-1455.
    7. Zhang, Qunjiao & Lu, Jun-an, 2008. "Chaos synchronization of a new chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 175-179.
    8. Ge, Z.-M. & Cheng, J.-W., 2005. "Chaos synchronization and parameter identification of three time scales brushless DC motor system," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 597-616.
    9. Behzad, Mehdi & Salarieh, Hassan & Alasty, Aria, 2008. "Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1295-1304.
    10. Feki, Moez, 2009. "Sliding mode control and synchronization of chaotic systems with parametric uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1390-1400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josephy Dias Santos & Frederico Marques & Lina Paola Garcés Negrete & Gelson A. Andrêa Brigatto & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2022. "A Novel Solution Method for the Distribution Network Reconfiguration Problem Based on a Search Mechanism Enhancement of the Improved Harmony Search Algorithm," Energies, MDPI, vol. 15(6), pages 1-15, March.
    2. Amaya, Ivan & Cruz, Jorge & Correa, Rodrigo, 2015. "Harmony Search algorithm: a variant with Self-regulated Fretwidth," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1127-1152.
    3. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dadras, Sara & Momeni, Hamid Reza, 2010. "Adaptive sliding mode control of chaotic dynamical systems with application to synchronization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2245-2257.
    2. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    3. Coelho, Leandro dos Santos & Bernert, Diego Luis de Andrade, 2009. "PID control design for chaotic synchronization using a tribes optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 634-640.
    4. Zhu, Hui & Li, Lixiang & Zhao, Ying & Guo, Yu & Yang, Yixian, 2009. "CAS algorithm-based optimum design of PID controller in AVR system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 792-800.
    5. Heydari, Mahdi & Salarieh, Hassan & Behzad, Mehdi, 2011. "Stochastic chaos synchronization using Unscented Kalman–Bucy Filter and sliding mode control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1770-1784.
    6. Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.
    7. Lin, Shih-Lin & Tung, Pi-Cheng, 2009. "A new method for chaos control in communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3234-3241.
    8. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.
    9. Ahmad Sami Bataineh & Osman Rasit Isik & Moa’ath Oqielat & Ishak Hashim, 2021. "An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    10. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    11. Farivar, Faezeh & Aliyari Shoorehdeli, Mahdi & Nekoui, Mohammad Ali & Teshnehlab, Mohammad, 2012. "Chaos control and generalized projective synchronization of heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive variable structure control," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 80-97.
    12. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    13. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    14. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    15. Chen, Mou & Chen, Wen-hua, 2009. "Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2716-2724.
    16. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    17. Ayati, Moosa & Khaloozadeh, Hamid, 2009. "A stable adaptive synchronization scheme for uncertain chaotic systems via observer," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2473-2483.
    18. Wu, Quanjun & Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2009. "Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2706-2715.
    19. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    20. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2526-2532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.